Skip to main content
Log in

Low temperatures impact dormancy status, flowering competence, and transcript profiles in crown buds of leafy spurge

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Leafy spurge (Euphorbia esula) is an herbaceous perennial weed that produces vegetatively from an abundance of underground adventitious buds. In this study, we report the effects of different environmental conditions on vegetative production and flowering competence, and determine molecular mechanisms associated with dormancy transitions under controlled conditions. Reduction in temperature (27–10°C) and photoperiod (16–8 h) over a 3-month period induced a para- to endo-dormant transition in crown buds. An additional 11 weeks of cold (5–7°C) and short-photoperiod resulted in accelerated shoot growth from crown buds, and 99% floral competence when plants were returned to growth-promoting conditions. Exposure of paradormant plants to short-photoperiod and prolonged cold treatment alone had minimal affect on growth potential and resulted in ~1% flowering. Likewise, endodormant crown buds without prolonged cold treatment displayed delayed shoot growth and ~2% flowering when returned to growth-promoting conditions. Transcriptome analysis revealed that 373 and 260 genes were differentially expressed (P < 0.005) during para- to endo-dormant and endo- to eco-dormant transitions, respectively. Transcripts from flower competent vs. non-flower competent crown buds identified 607 differentially expressed genes. Further, sub-network analysis identified expression targets and binding partners associated with circadian clock, dehydration/cold signaling, phosphorylation cascades, and response to abscisic acid, ethylene, gibberellic acid, and jasmonic acid, suggesting these central regulators affect well-defined phases of dormancy and flowering. Potential genetic pathways associated with these dormancy transitions and flowering were used to develop a proposed conceptual model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Achard P, Genschik P (2009) Releasing the breaks of plant growth: how gas shutdown DELLA proteins. J Exp Bot 60:1085–1092

    Article  CAS  PubMed  Google Scholar 

  • Achard P, Gong F, Cheminant S, Alioua M, Hedden P, Genschik P (2008) The cold-inducible CBF-1 factor-dependent signaling pathway modulates the accumulation of the growth-repressing DELLA proteins via its effect on gibberellin metabolism. Plant Cell 20:2117–2129

    Article  CAS  PubMed  Google Scholar 

  • Alabadí D, Blázquez MA (2009) Molecular interactions between light and hormone signaling to control plant growth. Plant Mol Biol 69:409–417

    Article  PubMed  Google Scholar 

  • Allona I, Ramos A, Ibáñez C, Contreras A, Casado R, Aragoncillo C (2008) Review. Molecular control of winter dormancy establishment in trees. Span J Agric Res 6:201–210 (Special issue)

    Google Scholar 

  • Anderson JV, Davis DG (2004) Abiotic stress alters transcript profiles and activity of glutathione S-transferase, glutathione peroxidase, and glutathione reductase in Euphorbia esula. Physiol Plant 120:421–433

    Article  CAS  PubMed  Google Scholar 

  • Anderson JV, Gesch RW, Jia Y, Chao WS, Horvath DP (2005) Seasonal shifts in dormancy status, carbohydrate metabolism, and related gene expression in crown buds of leafy spurge. Plant Cell Environ 28:1567–1578

    Article  CAS  Google Scholar 

  • Anderson JV, Horvath DP, Chao WS, Foley ME, Hernandez A, Thimmapuram J, Liu L, Gong GL, Band M, Kim R, Mikel MA (2007) Characterization of an EST database for the perennial weed leafy spurge: an important resource for weed biology research. Weed Sci 55:193–203

    Article  CAS  Google Scholar 

  • Anderson JV, Horvath DP, Chao WS, Foley ME (2010) Bud dormancy in perennial plants: a mechanism for survival. In: Lubzens E, Cerda J, Clark M (eds) Dormancy and resistance in harsh environments. Topics in current genetics. Hohmann S (series ed), Springer. (in press)

  • Benedict C, Geisler M, Trygg J, Hunter N, Hurry V (2006) Consensus by democracy. Using meta-analyses of microarray and genomic data to model the cold acclimation signaling pathway in Arabidopsis. Plant Physiol 141:1219–1232

    Article  CAS  PubMed  Google Scholar 

  • Bielenberg DG, Wang Y, Fan S, Reighard GL, Scorza R, Abbottn AG (2004) A deletion affecting several gene candidates is present in the evergrowing peach mutant. J Hered 95:436–444

    Article  CAS  PubMed  Google Scholar 

  • Bielenberg DG, Wang Y, Li Z, Zhebentyayeva T, Fan S, Reighard GL, Scorza R, Abbott AG (2008) Sequencing and annotation of the evergrowing locus in peach [Prunus persica (L.) Batsch] reveals a cluster of six MADS-box transcription factors as candidate genes for regulation of terminal bud formation. Tree Genet Genomes 4:495–507

    Article  Google Scholar 

  • Bieniawska Z, Esinoza C, Schlereth A, Sulpice R, Hincha DK, Hannah MA (2008) Disruption of the Arabidopsis circadian clock is responsible for extensive variation in the cold-responsive transcriptome. Plant Physiol 147:263–279

    Article  CAS  PubMed  Google Scholar 

  • Böhlenius H, Huang T, Charbonnel-Campaa L, Brunner AM, Jansson S, Strauss SH, Nilsson O (2006) CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees. Science 312:1040–1043

    Article  PubMed  Google Scholar 

  • Chang S, Puryear J, Cairney J (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep 11:113–116

    Article  CAS  Google Scholar 

  • Chao WS (2008) Real-time PCR as a tool to study weed biology. Weed Sci 56:290–296

    Article  CAS  Google Scholar 

  • Chao WS, Horvath DP, Anderson JV, Foley ME (2005) Potential model weeds to study genomics, ecology, and physiology in the 21st century. Weed Sci 53:929–937

    Article  CAS  Google Scholar 

  • Chao WS, Serpe MD, Anderson JV, Gesch RW, Horvath DP (2006) Sugars, hormones, and environment affect the dormancy status in underground adventitious buds of leafy spurge (Euphorbia esula L.). Weed Sci 54:59–68

    Article  CAS  Google Scholar 

  • Chao WS, Foley ME, Horvath DP, Anderson JV (2007) Signals regulating dormancy in vegetative buds. Int J Plant Dev Biol 1:49–56 (Print ISSN 1749-4753)

    Google Scholar 

  • Choi K, Park C, Lee J, Oh M, Noh B, Lee I (2007) Arabidopsis homologs of components of the SWR1 complex regulate flowering and plant development. Development 134:1931–1941

    Article  CAS  PubMed  Google Scholar 

  • Chouard P (1960) Vernalization and its relations to dormancy. Annu Rev Plant Physiol 11:191–238

    Article  CAS  Google Scholar 

  • Churchill GA (2002) Fundamentals of experimental design for cDNA microarrays. Nat Genet 32:490–495

    Article  CAS  PubMed  Google Scholar 

  • Deal RB, Topp CN, McKinney EC, Meagher RB (2007) Repression of flowering in Arabidopsis requires activation of FLOWERING LOCUS C expression by the histone variant H2A.Z. Plant Cell 19:74–83

    Article  CAS  PubMed  Google Scholar 

  • Edwards KD, Anderson PE, Hall A, Salathia NS, Locke JCW, Lynn JR, Straume M, Smith JQ, Millar AJ (2006) FLOWERING LOCUS C mediates natural variation in the high-temperature response of the Arabidopsis circadian clock. Plant Cell 18(3):639–650

    Article  CAS  PubMed  Google Scholar 

  • Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95:14863–14868

    Article  CAS  PubMed  Google Scholar 

  • Eriksson ME (2000) The role of phytochrome A and gibberellins in growth under long and short day conditions. Studies in hybrid aspen. Swedish University of Agricultural Sciences, Umea (ISSN 1401-6230)

    Google Scholar 

  • Foley ME, Anderson JV, Horvath DP (2009) The effects of temperature, photoperiod, and vernalization on regrowth and flowering competence in Euphorbia esula (Euphorbiaceae) crown buds. Botany 87(10):986–992

    Article  CAS  Google Scholar 

  • Fowler SG, Cook D, Thomashow MF (2005) Low temperature induction of Arabidopsis CBF1, 2, and 3 is gated by the circadian clock. Plant Physiol 137:961–968

    Article  CAS  PubMed  Google Scholar 

  • Franklin KA (2009) Light and temperature signal crosstalk in plant development. Curr Opin Plant Biol 12:63–68

    Article  CAS  PubMed  Google Scholar 

  • Gilmour SJ, Sebolt AM, Salazar MP, Everard JD, Thomashow MF (2000) Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol 124:1854–1865

    Article  CAS  PubMed  Google Scholar 

  • Gould PD, Locke JCW, Larue C, Southern MM, Davis SJ, Hanano S, Moyle R, Milich R, Putterill J, Millar AJ, Hall A (2006) The molecular basis of temperature compensation in the Arabidopsis circadian clock. Plant Cell 18:1177–1187

    Article  CAS  PubMed  Google Scholar 

  • Haake V, Cook D, Riechmann JL, Pineda O, Thomashow MF, Zhang JZ (2002) Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant Physiol 130:639–648

    Article  CAS  PubMed  Google Scholar 

  • Harmer SL (2009) The circadian system in higher plants. Annu Rev Plant Biol 60:357–377

    Article  CAS  PubMed  Google Scholar 

  • Heide OM (2008) Interaction of photoperiod and temperature in the control of growth and dormancy of Prunus species. Sci Hortic 115:309–314

    Article  Google Scholar 

  • Heide OM, Prestrud AK (2005) Low temperature, but not photoperiod, controls growth cessation and dormancy induction and release in apple and pear. Tree Physiol 25:109–114

    CAS  PubMed  Google Scholar 

  • Helliwell CA, Wood CC, Robertson M, Peacock WJ, Dennis ES (2006) The Arabidopsis FLC protein interacts directly in vivo with SOC1 and FT chromatin and is part of a high-molecular-weight protein complex. Plant J 46:183–192

    Article  CAS  PubMed  Google Scholar 

  • Henderson IR, Dean C (2004) Control of Arabidopsis flowering: the chill before the bloom. Development 131:3829–3838

    Article  CAS  PubMed  Google Scholar 

  • Henriques R, Jang I-C, Chua N-H (2009) Regulated proteolysis in light-related signaling pathways. Curr Opin Plant Biol 12:49–56

    Article  CAS  PubMed  Google Scholar 

  • Heschel MS, Selby J, Butler C, Whitelam GC, Sharrock RA, Donohue K (2007) A new role for phytochromes in temperature-dependent germination. New Phytol 174:735–741

    Article  CAS  PubMed  Google Scholar 

  • Hirano K, Nakajima M, Asano K et al (2007) The GID1-mediated gibberellin perception mechanism is conserved in the lycophyte Selaginella moellendorffii but not in the Bryophyte Physcomitrella patens. Plant Cell 19:3058–3079

    Article  CAS  PubMed  Google Scholar 

  • Horvath DP (2009) Common mechanisms regulate flowering and dormancy. Plant Sci 177:523–531

    Article  CAS  Google Scholar 

  • Horvath DP, Anderson JV, Chao WS, Foley ME (2003) Knowing when to grow: signals regulating bud dormancy. Trends Plant Sci 8:534–539

    Article  CAS  PubMed  Google Scholar 

  • Horvath DP, Chao WS, Suttle JC, Thimmapuram J, Anderson JV (2008) Transcriptome analysis identifies novel responses and potential regulatory genes involved in seasonal dormancy transitions of leafy spurge (Euphorbia esula L.). BMC Genomics 9:536

    Article  PubMed  Google Scholar 

  • Horvath DP, Sung S, Kim D, Anderson JV (2010) Characterization, expression and function of DORMANCY ASSOCIATED MADS-BOX genes from leafy spurge. Plant Mol Biol. doi: 10.1007/s11103-009-9596-5)

  • Ibañez C, Ramos A, Acebo P, Contreras A, Casado R, Allona I, Aragoncillo C (2008) Overall alteration of circadian clock gene expression in the chestnut cold response. PLoS ONE 3:e3567. doi:10.1371/journal.pone.0003567

    Article  PubMed  Google Scholar 

  • Kim J (2007) Perception, transduction, and networks in cold signaling. J Plant Biol 50:139–147

    Article  CAS  Google Scholar 

  • Kim HJ, Kim YK, Park JY, Kim J (2002) Light signaling mediated by phytochrome plays an important role in cold-induced gene expression through the C-repeat/dehydration responsive element (C/DRE) in Arabidopsis thaliana. Plant J 29(6):693–704

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi Y, Weigel D (2007) Move on up, it’s time for change-mobile signals controlling photoperiod-dependent flowering. Genes Dev 21:2371–2384

    Article  CAS  PubMed  Google Scholar 

  • Kwolek AVA, Woolhouse HW (1982) Studies on the dormancy of Calluna-Vulgaris (L.) Hull, during winter—the effect of photoperiod and temperature on the induction of dormancy and the annual cycle of development. Ann Bot 49:367–376

    Google Scholar 

  • Lang GA, Early JD, Martin GC, Darnell RL (1987) Endo-, para-, and eco-dormancy: physiological terminology and classification for dormancy research. HortScience 22:371–377

    Google Scholar 

  • Lasserre E, Jobet E, Llauro C, Delseny M (2008) AtERF38 (At2g35700), an AP2/ERF family transcription factor gene from Arabidopsis thaliana, is expressed in specific cell types of roots, stems and seeds that undergo suberization. Plant Physiol Biochem 46:1051–1061

    Article  CAS  PubMed  Google Scholar 

  • Lee J, He K, Stolc V, Lee H, Figueroa P, Gao Y, Tongprasit W, Zhao H, Lee I, Deng XW (2007) Analysis of transcription factor HY5 genomic binding sites revealed its hierarchical role in light regulation of development. Plant Cell 19:731–749

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Reighard GL, Abbott AG, Bielenberg DG (2009) Dormancy-associated MADS genes from the EVG locus of [Prunus persica (L.) Batsch] have distinct seasonal and photoperiodic expression patterns. J Exp Bot 60:3521–3530

    Article  CAS  PubMed  Google Scholar 

  • Lokko Y, Anderson JV, Rudd S, Raji A, Horvath DP, Mikel MA, Kim R, Liu L, Hernandez A, Dixon AGO, Ingelbrecht IL (2007) Characterization of an 18, 166 EST dataset for cassava (Manihot esculenta Crantz) enriched for drought-responsive genes. Plant Cell Rep 26:1605–1618

    Article  CAS  PubMed  Google Scholar 

  • Mathiason K, He D, Grimplet J, Venkateswari J, Galbraith DW, Or E, Fennell A (2008) Transcript profiling in Vitis riparia during chilling requirement fulfillment reveals coordination of gene expression patterns with optimized bud break. Funct Integr Genomics 9:81–96

    Article  PubMed  Google Scholar 

  • Mazzitelli L, Hancock RD, Haupt S, Walker PG, Pont SDA, McNicol J, Cardle L, Morris J, Viola R, Brennan R, Hedley PE, Taylor MA (2007) Co-ordinated gene expression during phases of dormancy release in raspberry (Rubus idaeus L.) buds. J Exp Bot 58:1035–1045

    Article  CAS  PubMed  Google Scholar 

  • McClung CR (2006) Plant circadian rhythms. Plant Cell 18:792–803

    Article  CAS  PubMed  Google Scholar 

  • Michael TP, Salome PA, McClung CR (2003) Two Arabidopsis circadian oscillators can be distinguished by differential temperature sensitivity. Proc Natl Acad Sci USA 100:6878–6883

    Article  CAS  PubMed  Google Scholar 

  • Michaels SD (2009) Flowering time regulation produces much fruit. Curr Opin Plant Biol 12:75–80

    Article  CAS  PubMed  Google Scholar 

  • Mohr PG, Cahill DM (2007) Suppression by ABA of salicylic acid and lignin accumulation and the expression of multiple genes, in Arabidopsis infected with Pseudomonas syringae pv. tomato. Funct Integr Genomics 7:181–191

    Article  CAS  PubMed  Google Scholar 

  • Moon J, Parry G, Estelle M (2004) The ubiquitin-proteasome pathway and plant development. Plant Cell 16:3181–3195

    Article  CAS  PubMed  Google Scholar 

  • Nakano T, Suzuki K, Fujimura T, Shinshi H (2006) Genome-wide analysis of the ERF gene family in Arabidopsis and Rice. Plant Physiol 140:411–432

    Article  CAS  PubMed  Google Scholar 

  • Niki T, Mitsuhara I, Seo S, Ohtsubo N, Ohashi Y (1998) Antagonistic effect of salicylic acid and jasmonic acid on the expression of pathogenesis-related (PR) protein genes in wounded mature tobacco leaves. Plant Cell Physiol 39:500–507

    CAS  Google Scholar 

  • Noh YS, Amasino R (2003) PIE1, an ISWI family gene, is required for FLC activation and floral repression in Arabidopsis. Plant Cell 15:1671–1682

    Article  CAS  PubMed  Google Scholar 

  • Nozue K, Maloof J (2006) Diurnal regulation of plant growth. Plant Cell Environ 29:396–408

    Article  CAS  PubMed  Google Scholar 

  • Olsen JE, Junttila O, Nilsen J, Eriksson ME, Martinussen I, Olsson O, Sandberg G, Moritz T (1997) Ectopic expression of oat phytochrome A in hybrid aspen changes critical daylength for growth and prevents cold acclimatization. Plant J 12(6):1339–1350

    Article  CAS  Google Scholar 

  • Or E (2009) Grape bud dormancy release-the molecular aspect. In: Roubelakis-Angelakis KA (ed) Grapevine Molecular Physiology and Biotechnology, 2nd edn. Springer Science and Business Media B.V. doi: 10.1007/978-90-481-2305-6_1

  • Penfield S (2008) Temperature perception and signal transduction in plants. New Phytol 179:615–628

    Article  CAS  PubMed  Google Scholar 

  • Putterill J, Laurie R, Macknight R (2004) It’s time to flower: the genetic control of flowering time. BioEssays 26:363–373

    Article  CAS  PubMed  Google Scholar 

  • Ramos A, Perez-Solis E, Ibanez C, Casado R, Collada C, Gomez L, Aragoncillo C, Allona I (2005) Winter disruption of the circadian clock in chestnut. Proc Natl Acad Sci USA 102:7037–7042

    Article  CAS  PubMed  Google Scholar 

  • Ratcliffe OJ, Kuminoto RW, Wong BJ, Riechmann JL (2003) Analysis of the Arabidopsis MADS AFFECTING FLOWERING gene family: MAF2 prevents vernalization by short periods of cold. Plant Cell 15:1159–1169

    Article  CAS  PubMed  Google Scholar 

  • Reeves PA, He Y, Schmitz RJ, Amasino RM, Panella LW, Richards CM (2007) Evolutionary conservation of the FLOWERING LOCUS C-mediated vernalization response: evidence from sugar beet (Beta vulgaris). Genetics 176:295–307

    Article  CAS  PubMed  Google Scholar 

  • Rensing L, Ruoff P (2002) Temperature effect on entrainment, phase shifting, and amplitude of circadian clocks and its molecular bases. Chronobiol Int J Biol Med Rhythm Res 19:807–864

    Article  CAS  Google Scholar 

  • Rohde A, Bhalerao RP (2007) Plant dormancy in the perennial context. Trends Plant Sci 12:217–223

    Article  CAS  PubMed  Google Scholar 

  • Ruepp A, Zollner A, Maier D (2004) The FunCat, a functional annotation scheme for systematic classification of proteins from whole genomes. Nucleic Acids Res 32:5539–5545

    Article  CAS  PubMed  Google Scholar 

  • Ruonala R, Rinne PLH, Kangasjarvi J, van der Schoot C (2008) CENL1 expression in the rib meristem affects stem elongation and the transition to dormancy in Populus. Plant Cell 20:59–74

    Article  CAS  PubMed  Google Scholar 

  • Ruttink T, Arend M, Morreel K, Storme V, Rombauts S, Fromm J, Bhalerao RP, Boerjan W, Rohde A (2007) A molecular timetable for apical bud formation and dormancy induction in poplar. Plant Cell 19:2370–2390

    Article  CAS  PubMed  Google Scholar 

  • Saijo Y, Sullivan JA, Wang H, Yang J, Shen Y, Rubio V, Ma L, Hoecker U, Deng XW (2003) The COP1-SPA1 interaction defines a critical step in phytochrome A-mediated regulation of HY5 activity. Gene Dev 17:2642–2647

    Article  CAS  PubMed  Google Scholar 

  • Salathia N, Davis SJ, Lynn JR, Michaels SD, Amasino RM, Millar AJ (2006) FLOWERING LOCUS C-dependent and -independent regulation of the circadian clock by the autonomous and vernalization pathways. BMC Plant Biol 6:10. doi:10.1186/1471-2229-6-10

    Article  PubMed  Google Scholar 

  • Salome PA, McClung CR (2005) PSEUDO-RESPONSE REGULATOR 7 and 9 are partially redundant genes essential for the temperature responsiveness of the Arabidopsis circadian clock. Plant Cell 17:791–803

    Article  CAS  PubMed  Google Scholar 

  • Samach A, Wigge PA (2005) Ambient temperature perception in plants. J Plant Biol 8:483–486

    Google Scholar 

  • Sawa M, Nusinow DA, Kay SA, Imaizumi T (2007) FKF1 and GIGANTEA complex formation is required for day-length measurement in Arabidopsis. Science 318:206–207

    Article  Google Scholar 

  • Searle I, He Y, Turck F, Vincent C, Fornara F, Kröber S, Amasino RA, Coupland G (2006) The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis. Gene Dev 20:898–912

    Article  CAS  PubMed  Google Scholar 

  • Smith H (2000) Phytochromes and light signal perception by plants-an emerging synthesis. Nature 407:585–591

    Article  CAS  PubMed  Google Scholar 

  • Sumitomo K, Narumi T, Satoh S, Hisamatsu T (2008) Involvement of the ethylene response pathway in dormancy induction in chrysanthemum. J Exp Bot 59:4075–4082

    Article  CAS  PubMed  Google Scholar 

  • Suttle JC (1998) Involvement of ethylene in potato microtuber dormancy. Plant Physiol 118:843–848

    Article  CAS  PubMed  Google Scholar 

  • Svendsen E, Wilen R, Stevenson R, Liu R, Tanino KK (2007) A molecular marker associated with low-temperature induction of dormancy in red osier dogwood (Cornus sericea). Tree Physiol 27:385–397

    CAS  PubMed  Google Scholar 

  • Thomashow MF (2001) So what’s new in the field of plant cold acclimation? Lots!. Plant Physiol 125:89–93

    Article  CAS  PubMed  Google Scholar 

  • Ueguchi-Tanaka M, Ashikari M, Nakajima M et al (2005) GIBBERELLIN INSENSITIVE DWARF 1 encodes a soluble receptor for gibberellin. Nature 437:693–698

    Article  CAS  PubMed  Google Scholar 

  • Wang R, Farrona S, Vincent C, Joecker A, Schoof H, Turck F, Alonso-Blanco C, Coupland G, Albani M (2009) PEP1 regulates perennial flowering in Arabis alpine. Nature 459:423–428

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Brant Bigger, Cheryl Huckle, Wayne Sargent, Laura Kelley, and Leslee Storlie for their technical assistance during this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James V. Anderson.

Additional information

Invited paper for the 4th International Symposium on Plant Dormancy and special issue of Plant Molecular Biology.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doğramacı, M., Horvath, D.P., Chao, W.S. et al. Low temperatures impact dormancy status, flowering competence, and transcript profiles in crown buds of leafy spurge. Plant Mol Biol 73, 207–226 (2010). https://doi.org/10.1007/s11103-010-9621-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-010-9621-8

Keywords

Navigation