Skip to main content
Log in

Trichome specific expression of the tobacco (Nicotiana sylvestris) cembratrien-ol synthase genes is controlled by both activating and repressing cis-regions

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Tobacco (Nicotiana sylvestris) glandular trichomes make an attractive target for isoprenoid metabolic engineering because they produce large amounts of one type of diterpenoids, α- and β-cembratrien-diols. This article describes the establishment of tools for metabolic engineering of tobacco trichomes, namely a transgenic line with strongly reduced levels of diterpenoids in the exudate and the characterization of a trichome specific promoter. The diterpene-free tobacco line was generated by silencing the major tobacco diterpene synthases, which were found to be encoded by a family of four highly similar genes (NsCBTS-2a, NsCBTS-2b, NsCBTS-3 and NsCBTS-4), one of which is a pseudogene. The promoter regions of all four CBTS genes were sequenced and found to share over 95% identity between them. Transgenic plants expressing uidA under the control of the NsCBTS-2a promoter displayed a specific pattern of GUS expression restricted exclusively to the glandular cells of the tall secretory trichomes. A series of sequential and internal deletions of the NsCBTS-2a promoter led to the identification of two cis-acting regions. The first, located between positions -589 to -479 from the transcription initiation site, conferred a broad transcriptional activation, not only in the glandular cells, but also in cells of the trichome stalk, as well as in the leaf epidermis and the root. The second region, located between positions -279 to -119, had broad repressor activity except in trichome glandular cells and is mainly responsible for the specific expression pattern of the NsCBTS-2a gene. These results establish the basis for the identification of trans-regulators required for the expression of the CBTS genes restricted to the secretory cells of the glandular trichomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bohlmann J, Crock J, Jetter R, Croteau R (1998) Terpenoid-based defenses in conifers: cDNA cloning, characterization, and functional expression of wound-inducible (E)-alpha-bisabolene synthase from grand fir (Abies grandis). Proc Natl Acad Sci USA 95:6756–6761

    Article  CAS  PubMed  Google Scholar 

  • Delaney SK, Orford SJ, Martin-Harris M, Timmis JN (2007) The fiber specificity of the cotton FSltp4 gene promoter is regulated by an AT-rich promoter region and the AT-hook transcription factor GhAT1. Plant Cell Physiol 48:1426–1437

    Article  CAS  PubMed  Google Scholar 

  • Fang R-X, Nagy F, Sivasubramaniam S, Chua N-H (1989) Multiple cis-regulatory elements required for maximal expression of the Cauliflower Mosaic Virus 35S promoter in transgenic plants. Plant Cell 1:41–150

    Article  Google Scholar 

  • Gallagher SR (ed) (1992) Quantitation of GUS activity by fluorometry. Academic Press Inc., San Diego, pp 47–59

    Google Scholar 

  • Guo ZH, Severson RF, Wagner GJ (1994) Biosynthesis of the diterpene cis-abienol in cell-free extracts of tobacco trichomes. Arch Biochem Biophys 308:103–108

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez-Alcala G, Calo L, Gros F, Caissard J-C, Gotor C, Romero LC (2005) A versatile promoter for the expression of proteins in glandular and non-glandular trichomes from a variety of plants. J Exp Bot 56:2487–2494

    Article  CAS  PubMed  Google Scholar 

  • Hsu CY, Creech RG, Jenkins JN, Ma DP (1999) Analysis of promoter activity of cotton lipid transfer protein gene LTP6 in transgenic tobacco plants. Plant Sci 143:63–70

    Article  CAS  Google Scholar 

  • Hsu CY, Jenkins JN, Saha S, Ma DP (2005) Transcriptional regulation of the lipid transfer protein gene LTP3 in cotton fibers by a novel MYB protein. Plant Sci 168:167–181

    Article  CAS  Google Scholar 

  • Kandra L, Wagner GJ (1988) Studies of the site and mode of biosynthesis of tobacco trichome exudate components. Arch Biochem Biophys 265:425–432

    Article  CAS  PubMed  Google Scholar 

  • Keene CK, Wagner GJ (1985) Direct demonstration of duvatrienediol biosynthesis in glandular heads of tobacco trichomes. Plant Phys 79:1026–1032

    Article  CAS  Google Scholar 

  • Lange BM, Croteau R (1999) Genetic engineering of essential oil production in mint. Current Opin Plant Biol 2:139–144

    Article  CAS  Google Scholar 

  • Liu HC, Creech RG, Jenkins JN, Ma DP (2000) Cloning and promoter analysis of the cotton lipid transfer protein gene Ltp3. Bioch Biophys Act 1487:106–111

    CAS  Google Scholar 

  • Liu J, Xia KF, Zhu JC, Deng YG, Huang XL, Hu BL, Xu XP, Xu ZF, Liu J, Xia KF, Zhu JC, Deng YG, Huang XL, Hu BL, Xu XP, Xu ZF (2006) The nightshade proteinase inhibitor IIb gene is constitutively expressed in glandular trichomes. Plant Cell Phys 47:1274–1284

    Article  CAS  Google Scholar 

  • Mahmoud SS, Croteau RB (2002) Strategies for transgenic manipulation of monoterpene biosynthesis in plants. Trends Plant Sci 7:366–373

    Article  CAS  PubMed  Google Scholar 

  • Martin DM, Fäldt J, Bohlmann J (2004) Functional characterization of nine Norway Spruce TPS genes and evolution of Gymnosperm Terpene Synthases of the TPS-d subfamily. Plant Physiol 135:1908–1927

    Article  CAS  PubMed  Google Scholar 

  • Rontein D, Onillon S, Herbette G, Lesot A, Werck-Reichhart D, Sallaud C, Tissier A (2008) CYP725A4 from yew catalyzes complex structural rearrangement of taxa-4(5), 11(12)-diene into the cyclic ether 5(12)-oxa-3(11)-cyclotaxane. J Biol Chem 283:6067–6075

    Article  CAS  PubMed  Google Scholar 

  • Ruan MB, Liao WB, Zhang XC, Yu XL, Peng M (2009) Analysis of the cotton sucrose synthase 3 (Sus3) promoter and first intron in transgenic Arabidopsis. Plant Sci 176:342–351

    Article  CAS  Google Scholar 

  • Sallaud C, Rontein D, Onillon S, Jabès F, Duffé P, Giacalone C, Thoraval S, Escoffier C, Herbette G, Leonhardt N, Causse M, Tissier A (2009) A Novel Pathway for Sesquiterpene Biosynthesis from Z, Z-Farnesyl Pyrophosphate in the Wild Tomato Solanum habrochaites. Plant Cell 21:301–317

    Article  CAS  PubMed  Google Scholar 

  • Schilmiller AL, Last RL, Pichersky E (2008) Harnessing plant trichome biochemistry for the production of useful compounds. Plant J 54:702–711

    Article  CAS  PubMed  Google Scholar 

  • Shangguan X-X, Xu B, Yu Z-X, Wang L-J, Chen X-Y (2008) Promoter of a cotton fibre MYB gene functional in trichomes of Arabidopsis and glandular trichomes of tobacco. J Exp Bot 59:3533–3542

    Article  CAS  PubMed  Google Scholar 

  • Siebert PD, Chenchick A, Kellogg DE, Lukyanov KA, Lukyanov SA (1995) An improved PCR method for walking in uncloned genomic DNA. Nucleic Acids Res 23:1087–1088

    Article  CAS  PubMed  Google Scholar 

  • Smith NA, Singh SP, Wang MB, Stoutjesdijk PA, Green AG, Waterhouse PM (2000) Total silencing by intron-spliced hairpin RNAs. Nature 407:319–320

    Article  CAS  PubMed  Google Scholar 

  • Stoutjesdijk PA, Singh SP, Liu Q, Hurlstone CJ, Waterhouse PA, Green AG (2002) hpRNA-mediated targeting of the Arabidopsis FAD2 gene gives highly efficient and stable silencing. Plant Physiol 129:1723–1731

    Article  CAS  PubMed  Google Scholar 

  • Van Der Hoeven RS, Monforte AJ, Breeden D, Tanksley SD, Steffens JC (2000) Genetic control and evolution of sesquiterpene biosynthesis in Lycopersicon esculentum and L. hirsutum. Plant Cell 12:2283–2294

    Article  Google Scholar 

  • Wagner GJ (1991) Secreting glandular trichomes: more than just hairs. Plant Physiol 96:675–679

    Article  CAS  PubMed  Google Scholar 

  • Wagner GJ, Wang E, Shepherd RW (2004) New approaches for studying and exploiting an old protuberance, the plant trichome. Ann Bot 93:3–11

    Article  CAS  PubMed  Google Scholar 

  • Wang E, Wagner GJ (2003) Elucidation of the functions of genes central to diterpene metabolism in tobacco trichomes using posttranscriptional gene silencing. Planta 216:686–691

    CAS  PubMed  Google Scholar 

  • Wang E, Wang R, DeParasis J, Loughrin JH, Gan S, Wagner GJ (2001) Suppression of a P450 hydroxylase gene in plant trichome glands enhances natural-product-based aphid resistance. Nat Biotech 19:371–374

    Article  CAS  Google Scholar 

  • Wang E, Gan S, Wagner GJ (2002) Isolation and characterization of the CYP71D16 trichome-specific promoter from Nicotiana tabacum L. J Exp Bot 53:1891–1897

    Article  CAS  PubMed  Google Scholar 

  • Wang EM, Hall JT, Wagner GJ (2004) Transgenic Nicotiana Tabacum L. with enhanced trichome exudate cembratrieneols has reduced aphid infestation in the field. Mol Breed 13:49–57

    Article  Google Scholar 

  • Wu AM, Liu JY (2006) Isolation of the promoter of a cotton beta-galactosidase gene (GhGal1) and its expression in transgenic tobacco plants. Sci Chin Ser C-Life Sci 49:105–114

    Article  CAS  Google Scholar 

  • Wu AM, Ling C, Liu JY (2006) Isolation of a cotton reversibly glycosylated polypeptide (GhRGP1) promoter and its expression activity in transgenic tobacco. J Plant Phys 163:426–435

    Article  CAS  Google Scholar 

  • Wu AM, Lv SY, Liu JY (2007) Functional analysis of a cotton glucuronosyltransferase promoter in transgenic tobaccos. Cell Res 17:174–183

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge the support of the Agence Nationale de la Recherche (programme Réseau Innovation Biotechnologies 2005), grant number ANR-05-PRIB02102 to AT and MH. We wish to thank the Groupement de Recherches Appliquées en Phytotechnologies of the CEA Cadarache for assistance in growing the plants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Tissier.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPT 240 kb)

Supplementary material 2 (DOC 125 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ennajdaoui, H., Vachon, G., Giacalone, C. et al. Trichome specific expression of the tobacco (Nicotiana sylvestris) cembratrien-ol synthase genes is controlled by both activating and repressing cis-regions. Plant Mol Biol 73, 673–685 (2010). https://doi.org/10.1007/s11103-010-9648-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-010-9648-x

Keywords

Navigation