Skip to main content

Advertisement

Log in

Genome Size of Three Miscanthus Species

  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Environmental and economic factors have stimulated research in the area of bioenergy crops. While many plants have been identified as potential energy crops, one species in particular, Miscanthus x giganteus, appears to have the most promise. As researchers attempt to exploit and improve M. x giganteus, genome information is critical. In this study, the genome size of M. x giganteus and its two progenitor species were examined by flow cytometry and stomatal cell analyses. M. x giganteus was found to have genome size of 7.0 pg while Miscanthus sinensis and Miscanthus sacchariflorus were observed to have genome sizes of 5.5 and 4.5 pg respectively with stomatal size correlating with genome size. Upon computing the two tetraploid × diploid hybrids theoretical genome sizes, the data presented in this paper supports the hypothesis of the union of a 2x M. sacchariflorus and a 1x M. sinensis gamete for the formation of the allotriploid, M. x giganteus. Such genomic information provides basic knowledge that is important in M. x giganteus plant improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adati S, Shiotani I. Cytotaxonomy of the genus Miscanthus and its phylogenic status. Bull Fac Agric Mie Univ. 1962;25:1–24.

    Google Scholar 

  • Aryavand A, Ehdaie B, Tran B, Waines JG. Stomatal frequency and size differentiate ploidy levels in Aegilops neglecta. Genet Res Crop Evol. 2003;50:175–82.

    Article  CAS  Google Scholar 

  • Beale CV, Long SP. Seasonal dynamics of nutrient accumulation and partitioning in the C-4 grass Miscanthus x giganteus and Spartina cynosuroides. Biomass Bioenergy. 1997;12:419–28.

    Article  Google Scholar 

  • Beale CV, Bint DA, Long SP. Leaf photosynthesis in the C-4 grass Miscanthus x giganteus, growing in the cool temperate climate of southern England. J Exp Biol. 1996;47:267–73.

    CAS  Google Scholar 

  • Beale CV, Morison JI, Long SP. Water use efficiencies of c4 perennial grasses in a temperate climate. Agr & Forest Meteorology. 1999;96:103–15.

    Article  Google Scholar 

  • Bennett MD. Nuclear DNA content and minimum generation time in herbaceous plants. Proc Roy Soc Lond B. 1972;181:109–35.

    Article  CAS  Google Scholar 

  • Chung J, Lee JH, Arumuganathan K, Graef GL, Specht JE. Relationship between nuclear DNA content and seed and leaf size inn soybean. Theor Appl Genet. 1998;96:1064–8.

    Article  Google Scholar 

  • Clifton-Brown JC, Lewandowski I, Andersson B, Basch G, Christian DG, Kjeldsen JB, et al. Performance of 15 Miscanthus genotypes at five sites in Europe. Agron J. 2001;93:1013–9.

    Google Scholar 

  • Heaton E, Voigt T, Long SP. A quantitative review comparing the yields of two candidate C-4 perennial biomass crops in relation to nitrogen, temperature and water. Biomass Bioenergy. 2004;27:21–30.

    Article  Google Scholar 

  • Heaton E, Dohleman FG, Long SP. Meeting US biofuel goals with less land: the potential of Miscanthus. Glob Chang Biol. 2008;14:1–15.

    Article  Google Scholar 

  • Hirayoshi I, Nishikawa K, Kato R, Kitagawa M. Cytogenetical forage studies on forage plants (III): chromosome numbers in Miscanthus. Jap Jour Breeding. 1955;5:49–50.

    Google Scholar 

  • Hirayoshi I, Nishikawa K, Hakura. Cytogenetical forage studies on forage plants (VIII): 3x- and 4x-hybrids raized from the cross, Miscanthus sinensis var. condensatus x M. sacchariflorus. Res Bull Fac Agr Gifu Univ. 1960;12:82–8.

    Google Scholar 

  • Hodkinson TR, Chase MW, Renvoize SA. Characterization of a genetic resource collection for Miscanthus (Saccharinae, Andropogonae, Poaceae) using AFLP and ISSR PCR. Ann Bot. 2002a;89:627–36.

    Article  PubMed  CAS  Google Scholar 

  • Hodkinson TR, Chase MW, Lledo MD, Salamin N, Renvoize SA. Phylogenetics of Miscanthus, Saccharum related genera (Saccharinae, Andropogonae, Poaceae) based on DNA sequences from ITS nuclear ribosomal DNA and plastid trnL intron and trnl-F intergenic spacers. J Plant Res. 2002b;115:381–92.

    Article  PubMed  CAS  Google Scholar 

  • Jeschke MR, Tranel PJ, Rayburn AL. DNA content analysis of smooth pigweed (Amaranthus hybridus) and tall waterhemp (A. tuberculatus): implications for hybrid detection. Weed Sci. 2003;51:1–3.

    Article  CAS  Google Scholar 

  • Lafferty J, Lelley T. Cytogenetic studies of different Miscanthus species with potential for agricultural use. Plant Breed. 1994;113:246–9.

    Article  Google Scholar 

  • Lewandowski I, Clifton-Brown JC, Surlock JMO, Huisman S. Miscanthus: European experience with a novel energy crop. Biomass Bioenergy. 2000;19:209–27.

    Article  CAS  Google Scholar 

  • Linde-Laursen I. Cytogenetic analysis of Miscanthus ‘Giganteus’, an interspecfic hybrid. Hereditas 1993;119:297–300.

    Article  Google Scholar 

  • McMurphy LM, Rayburn AL. Genome size variation in maize populations selected for cold tolerance. Plant Breed. 1991;106:190–5.

    Article  Google Scholar 

  • Mishra MK. Stomatal characteristics at different ploidy levels in Coffea L. Ann Bot. 1997;80:689–92.

    Article  Google Scholar 

  • Nelson JM, Lane B, Freeling M. Expression of a mutant maize gene in the ventral leaf epidermis is sufficient to signal a switch of the dorsoventral axis. Development 2002;129:4581–9.

    PubMed  CAS  Google Scholar 

  • Ozkan H, Tuna M, Arumuganathan K. Nonadditive changes in genome size during allopolyploidization in wheat (Aegilops-Triticum) group. J Hered. 2003;94:260–4.

    Article  PubMed  CAS  Google Scholar 

  • Price S. Accessory chromosomes in Miscanthus floridulus. J Hered. 1963;54:13–6.

    Google Scholar 

  • Rayburn AL. Comparative studies of genome content. In: Zimmer EA, White TJ, Cann RL, Wilson AC, editors. Methods of enzymology volume 224. San Diego: Academic; 1993. p. 204–12.

    Google Scholar 

  • Rayburn AL, Auger JA, Benzinger EA, Benzinger AG0. Detection of intraspecific DNA content variation in Zea mays L. by flow cytometry. J Exp Bot. 1989;40:1179–83.

    Article  CAS  Google Scholar 

  • Rayburn AL, Biradar DP, Nelson RL, McCloskey R, Yeater KM. Documenting intraspecific genome size variation in soybean. Crop Sci. 2004;44:261–4.

    CAS  Google Scholar 

  • Rayburn AL, McCloskey R, Tatum TC, Bollero GA, Jeschke MR, Tranel PJ. Genome size analysis of weedy Amaranthus species. Crop Sci. 2005;45:2557–62.

    Article  CAS  Google Scholar 

  • Tatum TC, Nunez L, Kushad MM, Rayburn AL. Genome size variation in pumpkin (Cucurbita sp.). Ann Appl Bot. 2006;149:145–51.

    Article  CAS  Google Scholar 

  • Thomson JA, Alonso A, Miguel E. Clarification of the taxonomic status and relationships of Pteridium caudatum (Dennstaedtiaceae) in Central and South America. Bot J Lenn Soc. 2002;140:237–48.

    Article  Google Scholar 

  • Trucco T, Jeschke MR, Rayburn AL, Tranel PJ. Amaranthus hybrids can be pollinated frequently by A. tuberculatus under field conditions. Heredity 2005;94:410–6.

    Article  Google Scholar 

  • Wetzel JB, Rayburn AL. Use of fluorescence genomic in situ hybridization (GISH) to detect the presence of alien chromatin in wheat lines differing in nuclear DNA content. Cytometry 2000;41:36–40.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Illinois Council on Food and Agricultural Research (C-FAR) SRI grant entitled “Biomass Energy Crops for Power and Heat Generation in Illinois: Diversifying Cropping, Improving Energy Security and Benefiting the Environment” for providing funding for this research. The authors thank Dr. B. Pilas of the Flow Cytometry Facility, a resource of the University of Illinois Biotechnology Center, for her assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John A. Juvik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rayburn, A.L., Crawford, J., Rayburn, C.M. et al. Genome Size of Three Miscanthus Species. Plant Mol Biol Rep 27, 184–188 (2009). https://doi.org/10.1007/s11105-008-0070-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-008-0070-3

Keywords

Navigation