Skip to main content

Advertisement

Log in

The insulin-like growth factor system and the fetal brain: Effects of poor maternal nutrition

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

The insulin-like growth factor (IGF) signaling system plays indispensable roles in pre- and post-natal brain growth and development. A large body of studies using both in vivo null mutant and transgenic mice and in vitro neuronal culture techniques indicate that IGF-I acts directly on the brain while IGF-II effects are mediated to a large extent by IGF-II control of placental growth. It appears that all of the mechanisms, except migration, that are involved in normal brain development, e.g., proliferation, apoptosis, maturation and differentiation, are influenced by IGF-I. While IGF system members are produced in the brain, recent reports in post-natal animals indicate that normal brain health and function are dependent upon transfer of circulating IGF-I from the liver and its transfer across the blood brain barrier. Data showing that this phenomenon applies to pre-natal brain growth and development would make an important contribution to fetal physiology. A number of kinase pathways are able to participate in IGF signaling in brain with respect to nutrient restriction; among the most important are the PI3K/AKT, Ras–Raf–MEK–ERK and mTOR-nutrient sensing pathways. Both maternal and fetal IGF-I peripheral plasma concentrations are greatly reduced in nutrient restriction while IGF-II does not appear to be affected. Nutrient restriction also affects IGF binding protein concentrations while effects on the IGF-I receptor appear to vary with the paradigm. Studies on the effects of nutrient restriction on the fetal primate brain in relation to activity of the IGF system are needed to determine the applicability of rodent studies to humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Han VKM, Hill DJ. Growth factors in fetal growth. In: Thorburn GD, Harding R, editors. Textbook of fetal physiology. Oxford University Press; 1994. p. 48–69.

  2. Deayton JM, Young IR, Thorburn GD. Early hypophysectomy of sheep fetuses: effects on growth, placental steroidogenesis and prostaglandin production. J Reprod Fertil 1993;97:513–20.

    Article  PubMed  CAS  Google Scholar 

  3. Latimer AM, Hausman GJ, McCusker RH, Buonomo FC. The effects of thyroxine on serum and tissue concentrations of insulin-like growth factors (IGF-I and -II) and IGF-binding proteins in the fetal pig. Endocrinology 1993;133:1312–9.

    PubMed  CAS  Google Scholar 

  4. Hausman DB, Hausman GJ, Martin RJ. Endocrine regulation of fetal adipose tissue metabolism in the pig: interaction of porcine growth hormone and thyroxine. Obes Res 1999;7:76–82.

    PubMed  CAS  Google Scholar 

  5. Han VK, Carter AM. Spatial and temporal patterns of expression of messenger RNA for insulin-like growth factors and their binding proteins in the placenta of man and laboratory animals. Placenta 2000;21:289–305.

    PubMed  CAS  Google Scholar 

  6. Langford K, Blum W, Nicolaides K, Jones J, McGregor A, Miell J. The pathophysiology of the insulin-like growth factor axis in fetal growth failure: a basis for programming by undernutrition? Eur J Clin Invest 1994;24:851–6.

    PubMed  CAS  Google Scholar 

  7. Liu JP, Baker J, Perkins AS, Robertson EJ, Efstratiadis A. Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF receptor (Igf1r). Cell 1993;75:59–72.

    PubMed  CAS  Google Scholar 

  8. Baker J, Liu JP, Robertson EJ, Efstratiadis A. Role of insulin-like growth factors in embryonic and postnatal growth. Cell 1993;75:73–82.

    PubMed  CAS  Google Scholar 

  9. Rother KI, Accili D. Role of insulin receptors and IGF receptors in growth and development. Pediatr Nephrol 2000;14:558–61.

    PubMed  CAS  Google Scholar 

  10. Yakar S, Liu JL, Stannard B, Butler A, Accili D, Sauer B, et al. Normal growth and development in the absence of hepatic insulin-like growth factor I. Proc Natl Acad Sci USA 1999;96:7324–9.

    PubMed  CAS  Google Scholar 

  11. Sjogren K, Liu JL, Blad K, Skrtic S, Vidal O, Wallenius V, et al. Liver-derived insulin-like growth factor I (IGF-I) is the principal source of IGF-I in blood but is not required for postnatal body growth in mice. Proc Natl Acad Sci USA 1999;96:7088–92.

    PubMed  CAS  Google Scholar 

  12. Han VK, Lund PK, Lee DC, D’Ercole AJ. Expression of somatomedin/insulin-like growth factor messenger ribonucleic acids in the human fetus: identification, characterization, and tissue distribution. J Clin Endocrinol Metab 1988;66:422–9.

    PubMed  CAS  Google Scholar 

  13. Gluckman PD, Butler JH. Circulating insulin-like growth factor-I and -II concentrations are not dependent on pituitary influences in the midgestation fetal sheep. J Dev Physiol 1985;7:405–9.

    PubMed  CAS  Google Scholar 

  14. Kim JD, Nanto-Salonen K, Szczepankiewicz JR, Rosenfeld RG, Glasscock GF. Evidence for pituitary regulation of somatic growth, insulin-like growth factors-I and -II, and their binding proteins in the fetal rat. Pediatr Res 1993;33:144–51.

    PubMed  CAS  Google Scholar 

  15. Gluckman PD, Gunn AJ, Wray A, Cutfield WS, Chatelain PG, Guilbaud O, et al. Congenital idiopathic growth hormone deficiency associated with prenatal and early postnatal growth failure. The International Board of the Kabi Pharmacia International Growth Study. J Pediatr 1992;121:920–3.

    PubMed  CAS  Google Scholar 

  16. Gluckman PD, Grumbach MM, Kaplan SL. The neurendocrine regulation and function of growth hormone and prolactin in the mammalian fetus. Endo Rev 1981;2:363–95.

    CAS  Google Scholar 

  17. Woods KA, Camacho-Hubner C, Savage MO, Clark AJ. Intrauterine growth retardation and postnatal growth failure associated with deletion of the insulin-like growth factor I gene. N Engl J Med 1996;335:1363–7.

    PubMed  CAS  Google Scholar 

  18. Vaessen N, Janssen JA, Heutink P, Hofman A, Lamberts SW, Oostra BA, et al. Association between genetic variation in the gene for insulin-like growth factor-I and low birthweight. Lancet 2002;359:1036–7.

    PubMed  CAS  Google Scholar 

  19. Woods KA, Camacho-Hubner C, Barter D, Clark AJ, Savage MO. Insulin-like growth factor I gene deletion causing intrauterine growth retardation and severe short stature. Acta Paediatr Suppl 1997;423:39–45.

    PubMed  CAS  Google Scholar 

  20. Mesiano S, Mellon SH, Jaffe RB. Mitogenic action, regulation, and localization of insulin-like growth factors in the human fetal adrenal gland. J Clin Endocrinol Metab 1993;76:968–76.

    PubMed  CAS  Google Scholar 

  21. Han VK, D’Ercole AJ, Lund PK. Cellular localization of somatomedin (insulin-like growth factor) messenger RNA in the human fetus. Science 1987;236:193–7.

    PubMed  CAS  Google Scholar 

  22. Rechler MM, Zapf J, Nissley SP, Froesch ER, Moses AC, Podskalny JM, et al. Interactions of insulin-like growth factors I and II and multiplication-stimulating activity with receptors and serum carrier proteins. Endocrinology 1980;107:1451–9.

    PubMed  CAS  Google Scholar 

  23. LeRoith D, Werner H, Beitner-Johnson D, Roberts CT, Jr. Molecular and cellular aspects of the insulin-like growth factor I receptor. Endocr Rev 1995;16:143–63.

    PubMed  CAS  Google Scholar 

  24. Hernandez-Sanchez C, Werner H, Roberts CT, Jr, Woo EJ, Hum DW, Rosenthal SM, et al. Differential regulation of insulin-like growth factor-I (IGF-I) receptor gene expression by IGF-I and basic fibroblastic growth factor. J Biol Chem 1997;272:4663–70.

    PubMed  CAS  Google Scholar 

  25. Schlueter PJ, Royer T, Farah MH, Laser B, Chan SJ, Steiner DF, et al. Gene duplication and functional divergence of the zebrafish insulin-like growth factor 1 receptors. FASEB J 2006;20:1230–2.

    PubMed  CAS  Google Scholar 

  26. Sklar MM, Kiess W, Thomas CL, Nissley SP. Developmental expression of the tissue insulin-like growth factor II/mannose 6-phosphate receptor in the rat. Measurement by quantitative immunoblotting. J Biol Chem 1989;264:16733–8.

    PubMed  CAS  Google Scholar 

  27. Thissen JP, Ketelslegers JM, Underwood LE. Nutritional regulation of the insulin-like growth factors. Endocr Rev 1994;15:80–101.

    PubMed  CAS  Google Scholar 

  28. Kornfeld S. Structure and function of the mannose 6-phosphate/insulinlike growth factor II receptors. Annu Rev Biochem 1992;l61:307–30.

    Google Scholar 

  29. Hemberger M, Redies C, Krause R, Oswald J, Walter J, Fundele RH. H19 and Igf2 are expressed and differentially imprinted in neuroectoderm-derived cells in the mouse brain. Dev Genes Evol 1998;208:393–402.

    PubMed  CAS  Google Scholar 

  30. Germain-Lee EL, Janicot M, Lammers R, Ullrich A, Casella SJ. Expression of a type I insulin-like growth factor receptor with low affinity for insulin-like growth factor II. Biochem J 1992;281(Pt 2):413–7.

    PubMed  CAS  Google Scholar 

  31. De Keyser J, Wilczak N, De Backer JP, Herroelen L, Vauquelin G. Insulin-like growth factor-I receptors in human brain and pituitary gland: an autoradiographic study. Synapse 1994;17:196–202.

    PubMed  Google Scholar 

  32. Wilczak N, De Bleser P, Luiten P, Geerts A, Teelken A, De Keyser J. Insulin-like growth factor II receptors in human brain and their absence in astrogliotic plaques in multiple sclerosis. Brain Res 2000;863:282–8.

    PubMed  CAS  Google Scholar 

  33. Furlanetto RW, DiCarlo JN, Wisehart C. The type II insulin-like growth factor receptor does not mediate deoxyribonucleic acid synthesis in human fibroblasts. J Clin Endocrinol Metab 1987;64:1142–9.

    PubMed  CAS  Google Scholar 

  34. Kiess W, Haskell JF, Lee L, Greenstein LA, Miller BE, Aarons AL, et al. An antibody that blocks insulin-like growth factor (IGF) binding to the type II IGF receptor is neither an agonist nor an inhibitor of IGF-stimulated biologic responses in L6 myoblasts. J Biol Chem 1987;262:12745–51.

    PubMed  CAS  Google Scholar 

  35. Chard T. Insulin-like growth factors and their binding proteins in normal and abnormal human fetal growth. Growth Regul 1994;4:91–100.

    PubMed  CAS  Google Scholar 

  36. Wood TL, Rogler LE, Czick ME, Schuller AG, Pintar JE. Selective alterations in organ sizes in mice with a targeted disruption of the insulin-like growth factor binding protein-2 gene. Mol Endocrinol 2000;14:1472–82.

    PubMed  CAS  Google Scholar 

  37. Ning Y, Schuller AG, Bradshaw S, Rotwein P, Ludwig T, Frystyk J, et al. Diminished growth and enhanced glucose metabolism in triple knockout mice containing mutations of insulin-like growth factor binding protein-3, -4, and -5. Mol Endocrinol 2006;20:2173–86.

    PubMed  CAS  Google Scholar 

  38. Boisclair YR, Rhoads RP, Ueki I, Wang J, Ooi GT. The acid-labile subunit (ALS) of the 150 kDa IGF-binding protein complex: an important but forgotten component of the circulating IGF system. J Endocrinol 2001;170:63–70.

    PubMed  CAS  Google Scholar 

  39. Hill DJ, Camacho-Hubner C, Rashid P, Strain AJ, Clemmons DR. Insulin-like growth factor (IGF)-binding protein release by human fetal fibroblasts: dependency on cell density and IGF peptides. J Endocrinol 1989;122:87–98.

    PubMed  CAS  Google Scholar 

  40. Cutfield WS, Hofman PL, Vickers M, Breier B, Blum WF, Robinson EM. IGFs and binding proteins in short children with intrauterine growth retardation. J Clin Endocrinol Metab 2002;87:235–9.

    PubMed  CAS  Google Scholar 

  41. Watson CS, Bialek P, Anzo M, Khosravi J, Yee SP, Han VK. Elevated circulating insulin-like growth factor binding protein-1 is sufficient to cause fetal growth restriction. Endocrinology 2006;147:1175–86.

    PubMed  CAS  Google Scholar 

  42. Popovici RM, Lu M, Bhatia S, Faessen GH, Giaccia AJ, Giudice LC. Hypoxia regulates insulin-like growth factor-binding protein 1 in human fetal hepatocytes in primary culture: suggestive molecular mechanisms for in utero fetal growth restriction caused by uteroplacental insufficiency. J Clin Endocrinol Metab 2001;86:2653–9.

    PubMed  CAS  Google Scholar 

  43. Kajimura S, Aida K, Duan C. Insulin-like growth factor-binding protein-1 (IGFBP-1) mediates hypoxia-induced embryonic growth and developmental retardation. Proc Natl Acad Sci USA 2005;102:1240–5.

    Google Scholar 

  44. Bienvenu G, Seurin D, Grellier P, Froment P, Baudrimont M, Monget P, et al. Insulin-like growth factor binding protein-6 transgenic mice: postnatal growth, brain development, and reproduction abnormalities. Endocrinology 2004;145:2412–20.

    PubMed  CAS  Google Scholar 

  45. Fowden AL. The role of insulin in prenatal growth. J Dev Physiol 1989;12:173–82.

    PubMed  CAS  Google Scholar 

  46. Leibush BN, Lappova YL, Bondareva VM, Chistyacova OV, Gutierrez J, Plisetskaya EM. Insulin-family peptide-receptor interaction at the early stage of vertebrate evolution. Comp Biochem Physiol B Biochem Mol Biol 1998;121:57–63.

    PubMed  CAS  Google Scholar 

  47. Adamo M, Roberts CT, Jr., LeRoith D. How distinct are the insulin and insulin-like growth factor I signalling systems? Biofactors 1992;3:151–7.

    PubMed  CAS  Google Scholar 

  48. Louvi A, Accili D, Efstratiadis A. Growth-promoting interaction of IGF-II with the insulin receptor during mouse embryonic development. Dev Biol 1997;189:33–48.

    PubMed  CAS  Google Scholar 

  49. Marin-Padilla M. Early prenatal ontogenesis of the cerebral cortex (neocortex) of the cat (Felis domestica). A Golgi study. I. The primordial neocortical organization. Z Anat Entwicklungsgesch 1971;134:117–45.

    PubMed  CAS  Google Scholar 

  50. D’Arcangelo G, Nakajima K, Miyata T, Ogawa M, Mikoshiba K, Curran T. Reelin is a secreted glycoprotein recognized by the CR-50 monoclonal antibody. J Neurosci 1997;17:23–31.

    PubMed  CAS  Google Scholar 

  51. Marin-Padilla M. Cajal–Retzius cells and the development of the neocortex. Trends Neurosci 1998;21:64–71.

    PubMed  CAS  Google Scholar 

  52. Kandel ER, Schwartz JH, Jessell TM, editors. Principles of Neural Science 3rd edition. New York: Elsevier; 1991.

  53. Bayer SA, Altman J, Russo RJ, Zhang X. Timetables of neurogenesis in the human brain based on experimentally determined patterns in the rat. Neurotoxicology 1993;14:83–144.

    PubMed  CAS  Google Scholar 

  54. Watson WE. Physiology of neuroglia. Physiol Rev 1974;54:245–71.

    PubMed  CAS  Google Scholar 

  55. Angevine JBJ, Sidman RL. Autoradiographic study of cell migration during histogenesis of cerebral cortex in the mouse. Nature 1961;192:766–8.

    PubMed  Google Scholar 

  56. Zecevic N, Rakic P. Development of layer I neurons in the primate cerebral cortex. J Neurosci 2001;21:5607–19.

    PubMed  CAS  Google Scholar 

  57. Levitt P, Eagleson KL. Regionalization of the cerebral cortex: developmental mechanisms and models. Novartis Found Symp 2000;228:173–81.

    PubMed  CAS  Google Scholar 

  58. Uylings HB, van Eden CG. Qualitative and quantitative comparison of the prefrontal cortex in rat and in primates, including humans. Prog Brain Res 1990;85:31–62.

    Article  PubMed  CAS  Google Scholar 

  59. Rice D, Barone S Jr. Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environ Health Perspect 2000;108 Suppl 3:511–33.

    PubMed  Google Scholar 

  60. Giaume C, Froger N, Koulakoff A. Gap junction-mediated intercellular communication in astrocytes and neuroprotection. Ann Fr Anesth Reanim 2006;24:695–6.

    Google Scholar 

  61. Chandran S, Compston A. Neural stem cells as a potential source of oligodendrocytes for myelin repair. J Neurol Sci 2005;233:179–81.

    PubMed  CAS  Google Scholar 

  62. Lai C. Peripheral glia: Schwann cells in motion. Curr Biol 2005;15:R332–4.

    PubMed  CAS  Google Scholar 

  63. Gotz M, Barde YA. Radial glial cells defined and major intermediates between embryonic stem cells and CNS neurons. Neuron 2005;46:369–72.

    PubMed  Google Scholar 

  64. Deng X, Sriram S. Role of microglia in multiple sclerosis. Curr Neurol Neurosci Rep 2005;5:239–44.

    PubMed  CAS  Google Scholar 

  65. Sherman DL, Brophy PJ. Mechanisms of axon ensheathment and myelin growth. Nat Rev Neurosci 2005;6:683–90.

    PubMed  CAS  Google Scholar 

  66. Blaschke AJ, Weiner JA, Chun J. Programmed cell death is a universal feature of embryonic and postnatal neuroproliferative regions throughout the central nervous system. J Comp Neurol 1998;396:39–50.

    PubMed  CAS  Google Scholar 

  67. Sonntag WE, Lynch CD, Bennett SA, Khan AS, Thornton PL, Cooney PT, et al. Alterations in insulin-like growth factor-1 gene and protein expression and type 1 insulin-like growth factor receptors in the brains of ageing rats. Neuroscience 1999;88:269–79.

    PubMed  CAS  Google Scholar 

  68. Andersson IK, Edwall D, Norstedt G, Rozell B, Skottner A, Hansson HA. Differing expression of insulin-like growth factor I in the developing and in the adult rat cerebellum. Acta Physiol Scand 1988;132:167–73.

    PubMed  CAS  Google Scholar 

  69. Bartlett WP, Li XS, Williams M. Expression of IGF-1 mRNA in the murine subventricular zone during postnatal development. Brain Res Mol Brain Res 1992;12:285–91.

    PubMed  CAS  Google Scholar 

  70. Garcia-Segura LM, Perez J, Pons S, Rejas MT, Torres-Aleman I. Localization of insulin-like growth factor I (IGF-I)-like immunoreactivity in the developing and adult rat brain. Brain Res 1991;560:167–74.

    PubMed  CAS  Google Scholar 

  71. Ayer-le Lievre C, Stahlbom PA, Sara VR. Expression of IGF-I and -II mRNA in the brain and craniofacial region of the rat fetus. Development 1991;111:105–15.

    PubMed  CAS  Google Scholar 

  72. Marks JL, Porte D, Jr, Baskin DG. Localization of type I insulin-like growth factor receptor messenger RNA in the adult rat brain by in situ hybridization. Mol Endocrinol 1991;5:1158–68.

    PubMed  CAS  Google Scholar 

  73. Jafferali S, Dumont Y, Sotty F, Robitaille Y, Quirion R, Kar S. Insulin-like growth factor-I and its receptor in the frontal cortex, hippocampus, and cerebellum of normal human and Alzheimer disease brains. Synapse 2000;38:450–9.

    PubMed  CAS  Google Scholar 

  74. Ye P, Carson J, D’Ercole AJ. Insulin-like growth factor-I influences the initiation of myelination: studies of the anterior commissure of transgenic mice. Neurosci Lett 1995;201:235–8.

    PubMed  CAS  Google Scholar 

  75. O’Kusky JR, Ye P, D’Ercole AJ. Insulin-like growth factor-I promotes neurogenesis and synaptogenesis in the hippocampal dentate gyrus during postnatal development. J Neurosci 2000;20:8435–42.

    PubMed  CAS  Google Scholar 

  76. Caroni P, Grandes P. Nerve sprouting in innervated adult skeletal muscle induced by exposure to elevated levels of insulin-like growth factors. J Cell Biol 1990;110:1307–17.

    PubMed  CAS  Google Scholar 

  77. Recio-Pinto E, Ishii DN. Insulin and insulinlike growth factor receptors regulating neurite formation in cultured human neuroblastoma cells. J Neurosci Res 1988;19:312–20.

    PubMed  CAS  Google Scholar 

  78. Lenoir D, Honegger P. Insulin-like growth factor I (IGF I) stimulates DNA synthesis in fetal rat brain cell cultures. Brain Res 1983;283:205–13.

    PubMed  CAS  Google Scholar 

  79. Shindler KS, Yunker AM, Cahn R, Zha J, Korsmeyer SJ, Roth KA. Trophic support promotes survival of bcl-x-deficient telencephalic cells in vitro. Cell Death Differ 1998;5:901–10.

    PubMed  CAS  Google Scholar 

  80. McMorris FA, Smith TM, DeSalvo S, Furlanetto RW. Insulin-like growth factor I/somatomedin C: a potent inducer of oligodendrocyte development. Proc Natl Acad Sci USA 1986;83:822–6.

    PubMed  CAS  Google Scholar 

  81. Dudek H, Datta SR, Franke TF, Birnbaum MJ, Yao R, Cooper GM, et al. Regulation of neuronal survival by the serine-threonine protein kinase Akt. Science 1997;275:661–5.

    PubMed  CAS  Google Scholar 

  82. Chrysis D, Calikoglu AS, Ye P, D’Ercole AJ. Insulin-like growth factor-I overexpression attenuates cerebellar apoptosis by altering the expression of Bcl family proteins in a developmentally specific manner. J Neurosci 2001;21:1481–9.

    PubMed  CAS  Google Scholar 

  83. D’Mello SR, Galli C, Ciotti T, Calissano P. Induction of apoptosis in cerebellar granule neurons by low potassium: inhibition of death by insulin-like growth factor I and cAMP. Proc Natl Acad Sci USA 1993;90:10989–93.

    PubMed  CAS  Google Scholar 

  84. Feldman EL, Sullivan KA, Kim B, Russell JW. Insulin-like growth factors regulate neuronal differentiation and survival. Neurobiol Dis 1997;4:201–14.

    PubMed  CAS  Google Scholar 

  85. Cheng CM, Reinhardt RR, Lee WH, Joncas G, Patel SC, Bondy CA. Insulin-like growth factor 1 regulates developing brain glucose metabolism. Proc Natl Acad Sci USA 2000;97:10236–41.

    PubMed  CAS  Google Scholar 

  86. Lopez-Lopez C, LeRoith D, Torres-Aleman I. Insulin-like growth factor I is required for vessel remodeling in the adult brain. Proc Natl Acad Sci USA 2004;101:9833–8.

    Google Scholar 

  87. Hellstrom A, Carlsson B, Niklasson A, Segnestam K, Boguszewski M, de Lacerda L, et al. IGF-I is critical for normal vascularization of the human retina. J Clin Endocrinol Metab 2002;87:3413–6.

    PubMed  CAS  Google Scholar 

  88. Carro E, Trejo JL, Gomez-Isla T, LeRoith D, Torres-Aleman I. Serum insulin-like growth factor I regulates brain amyloid-beta levels. Nat Med 2002;8:1390–7.

    PubMed  CAS  Google Scholar 

  89. Castro-Alamancos MA, Torres-Aleman I. Long-term depression of glutamate-induced gamma-aminobutyric acid release in cerebellum by insulin-like growth factor I. Proc Natl Acad Sci USA 1993;90:7386–90.

    PubMed  CAS  Google Scholar 

  90. Nunez A, Carro E, Torres-Aleman I. Insulin-like growth factor I modifies electrophysiological properties of rat brain stem neurons. J Neurophysiol 2003;89:3008–17.

    PubMed  CAS  Google Scholar 

  91. Beck KD, Powell-Braxton L, Widmer HR, Valverde J, Hefti F. Igf1 gene disruption results in reduced brain size, CNS hypomyelination, and loss of hippocampal granule and striatal parvalbumin-containing neurons. Neuron 1995;14:717–30.

    PubMed  CAS  Google Scholar 

  92. Carson MJ, Behringer RR, Brinster RL, McMorris FA. Insulin-like growth factor I increases brain growth and central nervous system myelination in transgenic mice. Neuron 1993;10:729–40.

    PubMed  CAS  Google Scholar 

  93. Gutierrez-Ospina G, Calikoglu AS, Ye P, D’Ercole AJ. In vivo effects of insulin-like growth factor-I on the development of sensory pathways: analysis of the primary somatic sensory cortex (S1) of transgenic mice. Endocrinology 1996;137:5484–92.

    PubMed  CAS  Google Scholar 

  94. Cheng CM, Joncas G, Reinhardt RR, Farrer R, Quarles R, Janssen J, et al. Biochemical and morphometric analyses show that myelination in the insulin-like growth factor 1 null brain is proportionate to its neuronal composition. J Neurosci 1998;18:5673–81.

    PubMed  CAS  Google Scholar 

  95. Ye P, Li L, Richards RG, Diaugustine RP, D’Ercole AJ. Myelination is altered in insulin-like growth factor-I null mutant mice. J Neurosci 2002;22:6041–51.

    PubMed  CAS  Google Scholar 

  96. Ye P, Carson J, D’Ercole AJ. In vivo actions of insulin-like growth factor-I (IGF-I) on brain myelination: studies of IGF-I and IGF binding protein-1 (IGFBP-1) transgenic mice. J Neurosci 1995;15:7344–56.

    PubMed  CAS  Google Scholar 

  97. Dentremont KD, Ye P, D’Ercole AJ, O’Kusky JR. Increased insulin-like growth factor-I (IGF-I) expression during early postnatal development differentially increases neuron number and growth in medullary nuclei of the mouse. Brain Res Dev Brain Res 1999;114:135–41.

    PubMed  CAS  Google Scholar 

  98. Reinhardt RR, Bondy CA. Insulin-like growth factors cross the blood-brain barrier. Endocrinology 1994;135:1753–61.

    PubMed  CAS  Google Scholar 

  99. Hoffman GE, Smith MS, Verbalis JG. c-Fos and related immediate early gene products as markers of activity in neuroendocrine systems. Front Neuroendocrinol 1996;14:172–213.

    Google Scholar 

  100. Carro E, Nunez A, Busiguina S, Torres-Aleman I. Circulating insulin-like growth factor I mediates effects of exercise on the brain. J Neurosci 2000;20:2926–33.

    PubMed  CAS  Google Scholar 

  101. Trejo JL, Carro E, Garcia-Galloway E, Torres-Aleman I. Role of insulin-like growth factor I signaling in neurodegenerative diseases. J Mol Med 2004;82:156–62.

    PubMed  CAS  Google Scholar 

  102. Carro E, Trejo JL, Spuch C, Bohl D, Heard JM, Torres-Aleman I. Blockade of the insulin-like growth factor I receptor in the choroid plexus originates Alzheimer’s-like neuropathology in rodents: new cues into the human disease? Neurobiol Aging 2006;27:1618–31.

    PubMed  CAS  Google Scholar 

  103. Chowen JA, Goya L, Ramos S, Busiguina S, Garcia-Segura LM, Argente J, et al. Effects of early undernutrition on the brain insulin-like growth factor-I system. J Neuroendocrinol 2002;14:163–9.

    PubMed  CAS  Google Scholar 

  104. D’Ercole AJ, Ye P, Gutierrez-Ospina G. Use of transgenic mice for understanding the physiology of insulin-like growth factors. Horm Res 1996;45 Suppl 1:5–7.

    PubMed  CAS  Google Scholar 

  105. Sullivan KA, Feldman EL. Immunohistochemical localization of insulin-like growth factor-II (IGF-II) and IGF-binding protein-2 during development in the rat brain. Endocrinology 1994;135:540–7.

    PubMed  CAS  Google Scholar 

  106. Sara VR, Hall K, Von Holtz H, Humbel R, Sjogren B, Wetterberg L. Evidence for the presence of specific receptors for insulin-like growth factors 1 (IGF-1) and 2 (IGF-2) and insulin throughout the adult human brain. Neurosci Lett 1982;34:39–44.

    PubMed  CAS  Google Scholar 

  107. D’Ercole AJ, Ye P, Calikoglu AS, Gutierrez-Ospina G. The role of the insulin-like growth factors in the central nervous system. Mol Neurobiol 1996;13:227–55.

    PubMed  CAS  Google Scholar 

  108. Chernausek SD. Insulin-like growth factor-I (IGF-I) production by astroglial cells: regulation and importance for epidermal growth factor-induced cell replication. J Neurosci Res 1993;34:189–97.

    PubMed  CAS  Google Scholar 

  109. Shinar Y, McMorris FA. Developing oligodendroglia express mRNA for insulin-like growth factor-I, a regulator of oligodendrocyte development. J Neurosci Res 1995;42:516–27.

    PubMed  CAS  Google Scholar 

  110. Hill DJ, Clemmons DR. Similar distribution of insulin-like growth factor binding proteins-1, -2, -3 in human fetal tissues. Growth Factors 1992;6:315–26.

    PubMed  CAS  Google Scholar 

  111. Lee WH, Michels KM, Bondy CA. Localization of insulin-like growth factor binding protein-2 messenger RNA during postnatal brain development: correlation with insulin-like growth factors I and II. Neuroscience 1993;53:251–65.

    PubMed  CAS  Google Scholar 

  112. Bondy C, Lee WH. Correlation between insulin-like growth factor (IGF)-binding protein 5 and IGF-I gene expression during brain development. J Neurosci 1993;13:5092–104.

    PubMed  CAS  Google Scholar 

  113. Martin DP, Schmidt RE, DiStefano PS, Lowry OH, Carter JG, Johnson EM, Jr. Inhibitors of protein synthesis and RNA synthesis prevent neuronal death caused by nerve growth factor deprivation. J Cell Biol 1988;106:829–44.

    PubMed  CAS  Google Scholar 

  114. Purves D. Body and brain: a trophic theory of neural connections. Cambridge, MA: Harvard Press, 1988.

    Google Scholar 

  115. Franke TF, Kaplan DR, Cantley LC. PI3K: downstream AKTion blocks apoptosis. Cell 1997;88:435–7.

    PubMed  CAS  Google Scholar 

  116. Butler AA, Yakar S, Gewolb IH, Karas M, Okubo Y, LeRoith D. Insulin-like growth factor-I receptor signal transduction: at the interface between physiology and cell biology. Comp Biochem Physiol B Biochem Mol Biol 1998;121:19–26.

    PubMed  CAS  Google Scholar 

  117. Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y, et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 1997;91:231–41.

    PubMed  CAS  Google Scholar 

  118. Cardone MH, Roy N, Stennicke HR, Salvesen GS, Franke TF, Stanbridge E, et al. Regulation of cell death protease caspase-9 by phosphorylation. Science 1998;282:1318–21.

    PubMed  CAS  Google Scholar 

  119. Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 1999;96:857–68.

    PubMed  CAS  Google Scholar 

  120. Yuan J, Yankner BA. Apoptosis in the nervous system. Nature 2000;407:802–9.

    PubMed  CAS  Google Scholar 

  121. Summers SA, Kao AW, Kohn AD, Backus GS, Roth RA, Pessin JE, et al. The role of glycogen synthase kinase 3beta in insulin-stimulated glucose metabolism. J Biol Chem 1999;274:17934–40.

    PubMed  CAS  Google Scholar 

  122. Quevedo C, Alcazar A, Salinas M. Two different signal transduction pathways are implicated in the regulation of initiation factor 2B activity in insulin-like growth factor-1-stimulated neuronal cells. J Biol Chem 2000;275:19192–7.

    PubMed  CAS  Google Scholar 

  123. Quevedo C, Salinas M, Alcazar A. Regulation of cap-dependent translation by insulin-like growth factor-1 in neuronal cells. Biochem Biophys Res Commun 2002;291:560–6.

    PubMed  CAS  Google Scholar 

  124. Vincent AM, Mobley BC, Hiller A, Feldman EL. IGF-I prevents glutamate-induced motor neuron programmed cell death. Neurobiol Dis 2004;16:407–16.

    PubMed  CAS  Google Scholar 

  125. Harris SL, Levine AJ. The p53 pathway: positive and negative feedback loops. Oncogene 2005;24:2899–908.

    PubMed  CAS  Google Scholar 

  126. Edinger AL, Thompson CB. Akt maintains cell size and survival by increasing mTOR-dependent nutrient uptake. Mol Biol Cell 2002;13:2276–88.

    PubMed  CAS  Google Scholar 

  127. Summers SA, Birnbaum MJ. A role for the serine/threonine kinase, Akt, in insulin-stimulated glucose uptake. Biochem Soc Trans 1997;25:981–8.

    PubMed  CAS  Google Scholar 

  128. Cheng CM, Cohen M, Wang J, Bondy CA. Estrogen augments glucose transporter and IGF1 expression in primate cerebral cortex. FASEB J 2001;15:907–15.

    PubMed  CAS  Google Scholar 

  129. Regnault TR, Friedman JE, Wilkening RB, Anthony RV, Hay WW, Jr. Fetoplacental transport and utilization of amino acids in IUGR—a review. Placenta 2005;26 Suppl A:S52–62.

    PubMed  Google Scholar 

  130. Bodine SC, Stitt TN, Gonzalez M, Kline WO, Stover GL, Bauerlein R, et al. Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol 2001;3:1014–9.

    PubMed  CAS  Google Scholar 

  131. Kim DH, Sarbassov DD, Ali SM, King JE, Latek RR, Erdjument-Bromage H, et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 2002;110:163–75.

    PubMed  CAS  Google Scholar 

  132. Fingar DC, Blenis J. Target of rapamycin (TOR): an integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression. Oncogene 2004;23:3151–71.

    PubMed  CAS  Google Scholar 

  133. Morgane PJ, Austin-LaFrance R, Bronzino J, Tonkiss J, Diaz-Cintra S, Cintra L, et al. Prenatal malnutrition and development of the brain. Neurosci Biobehav Rev 1993;17:91–128.

    PubMed  CAS  Google Scholar 

  134. Davenport ML, D’Ercole AJ, Underwood LE. Effect of maternal fasting on fetal growth, serum insulin-like growth factors (IGFs), and tissue IGF messenger ribonucleic acids. Endocrinology 1990;126:2062–7.

    Article  PubMed  CAS  Google Scholar 

  135. Chanez C, Priam M, Flexor MA, Hamon M, Bourgoin S, Kordon C, et al. Long lasting effects of intrauterine growth retardation of 5-HT metabolism in the brain of developing rats. Brain Res 1981;207:397–408.

    PubMed  CAS  Google Scholar 

  136. Smart JL, Dobbing J, Adlard BP, Lynch A, Sands J. Vulnerability of developing brain: relative effects of growth restriction during the fetal and suckling periods on behavior and brain composition of adult rats. J Nutr 1973;103:1327–38.

    PubMed  CAS  Google Scholar 

  137. Resnick O, Morgane PJ, Hasson R, Miller M. Overt and hidden forms of chronic malnutrition in the rat and their relevance to man. Neurosci Biobehav Rev 1982;6:55–75.

    PubMed  CAS  Google Scholar 

  138. Soto-Moyano R, Fernandez V, Sanhueza M, Belmar J, Kusch C, Perez H, et al. Effects of mild protein prenatal malnutrition and subsequent postnatal nutritional rehabilitation on noradrenaline release and neuronal density in the rat occipital cortex. Brain Res Dev Brain Res 1999;116:51–8.

    PubMed  CAS  Google Scholar 

  139. Leuba G, Rabinowicz T. Long-term effects of postnatal undernutrition and maternal malnutrition on mouse cerebral cortex. I. Cellular densities, cortical volume and total numbers of cells. Exp Brain Res 1979;37:283–98.

    PubMed  CAS  Google Scholar 

  140. Warren MA, Bedi KS. A quantitative assessment of the development of synapses and neurons in the visual cortex of control and undernourished rats. J Comp Neurol 1984;227:104–8.

    PubMed  CAS  Google Scholar 

  141. Angulo-Colmenares AG, Vaughan DW, Hinds JW. Rehabilitation following early malnutrition in the rat: body weight, brain size, and cerebral cortex development. Brain Res 1979;169:121–38.

    PubMed  CAS  Google Scholar 

  142. Diaz-Cintra S, Cintra L, Ortega A, Kemper T, Morgane PJ. Effects of protein deprivation on pyramidal cells of the visual cortex in rats of three age groups. J Comp Neurol 1990;292:117–26.

    PubMed  CAS  Google Scholar 

  143. Leuba G, Rabinowicz T. Long-term effects of postnatal undernutrition and maternal malnutrition on mouse cerebral cortex. II. Evolution of dendritic branchings and spines in the visual region. Exp Brain Res 1979;37:299–308.

    Article  PubMed  CAS  Google Scholar 

  144. Bedi KS. Undernutrition of rats during early life does not affect the total number of cortical neurons. J Comp Neurol 1994;342:596–602.

    PubMed  CAS  Google Scholar 

  145. Bourre JM, Morand O, Chanez C, Dumont O, Flexor MA. Influence of intrauterine malnutrition on brain development: alteration of myelination. Biol Neonate 1981;39:96–9.

    Article  PubMed  CAS  Google Scholar 

  146. Debassio WA, Kemper TL. The effects of protein deprivation on neuronal migration in rats. Brain Res 1985;352:191–6.

    PubMed  CAS  Google Scholar 

  147. Shambaugh GE, III, Radosevich JA, Glick RP, Gu DS, Metzger BE, Unterman TG. Insulin-like growth factors and binding proteins in the fetal rat: alterations during maternal starvation and effects in fetal brain cell culture. Neurochem Res 1993;18:695–703.

    PubMed  CAS  Google Scholar 

  148. Lassarre C, Hardouin S, Daffos F, Forestier F, Frankenne F, Binoux M. Serum insulin-like growth factors and insulin-like growth factor binding proteins in the human fetus. Relationships with growth in normal subjects and in subjects with intrauterine growth retardation. Pediatr Res 1991;29:219–25.

    PubMed  CAS  Google Scholar 

  149. Maheshwari HG, Mermelstein S, vonSchlegell AS, Shambaugh GE, III. Alteration in IGF-I binding in the cerebral cortex and cerebellum of neonatal rats during protein–calorie malnutrition. Neurochem Res 1997;22:313–9.

    PubMed  CAS  Google Scholar 

  150. Matsumura Y, Domeki M, Sugahara K, Kubo T, Roberts Jr CT, LeRoith D, et al. Nutritional regulation of insulin-like growth factor-I receptor mRNA levels in growing chickens. Biosci Biotechnol Biochem 1996;60:979–82.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter W. Nathanielsz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McDonald, T.J., Nijland, M.J. & Nathanielsz, P.W. The insulin-like growth factor system and the fetal brain: Effects of poor maternal nutrition. Rev Endocr Metab Disord 8, 71–84 (2007). https://doi.org/10.1007/s11154-007-9044-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-007-9044-2

Keywords

Navigation