Skip to main content
Log in

Biodegradability of chlorinated solvents and related chlorinated aliphatic compounds

  • Published:
Reviews in Environmental Science and Bio/Technology Aims and scope Submit manuscript

Abstract

The biodegradability of chlorinated methanes, chlorinated ethanes, chlorinated ethenes, chlorofluorocarbons (CFCs), chlorinated acetic acids, chlorinated propanoids and chlorinated butadienes was evaluated based on literature data. Evidence for the biodegradation of compounds in all of the compound categories evaluated has been reported. A broad range of chlorinated aliphatic structures are susceptible to biodegradation under a variety of physiological and redox conditions. Microbial biodegradation of a wide variety of chlorinated aliphatic compounds was shown to occur under five physiological conditions. However, any given physiological condition could only act upon a subset of the chlorinated compounds. Firstly, chlorinated compounds are used as an electron donor and carbon source under aerobic conditions. Secondly, chlorinated compounds are cometabolized under aerobic conditions while the microorganisms are growing (or otherwise already have grown) on another primary substrate. Thirdly, chlorinated compounds are also degraded under anaerobic conditions in which they are utilized as an electron donor and carbon source. Fourthly, chlorinated compounds can serve as an electron acceptor to support respiration of anaerobic microorganisms utilizing simple electron donating substrates. Lastly chlorinated compounds are subject to anaerobic cometabolism becoming biotransformed while the microorganisms grow on other primary substrate or electron acceptor. The literature survey demonstrates that, in many cases, chlorinated compounds are completely mineralised to benign end products. Additionally, biodegradation can occur rapidly. Growth rates exceeding 1 d-1 were observed for many compounds. Most compound categories include chlorinated structures that are used to support microbial growth. Growth can be due to the use of the chlorinated compound as an electron donor or alternatively to the use of the chlorinated compound as an electron acceptor (halorespiration). Biodegradation linked to growth is important, since under such conditions, rates of degradation will increase as the microbial population (biocatalyst) increases. Combinations of redox conditions are favorable for the biodegradation of highly chlorinated structures that are recalcitrant to degradation under aerobic conditions. However, under anaerobic conditions, highly chlorinated structures are partially dehalogenated to lower chlorinated counterparts. The lower chlorinated compounds are subsequently more readily mineralized under aerobic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A:

ethane

BTEX:

benzene–toluene–ethyl benzene–xylene

CA:

chloroethane

CAA:

chloroacetic acid

2-CBD:

2-chloro-1,3-butadiene

cDCE:

cis-dichloroethene

CF:

chloroform

CFC:

chlorofluorocarbons (seeTable 15 for CFC-nomenculture )

Cl:

inorganic chloride

CM:

chloromethane

CO:

carbon monoxide

CoM:

cometabolism

CPrpA:

chloropropane

CPrpE:

chloropropene

CSTR:

completely stirred tank reactor

CT:

carbon tetrachloride

c/tDCE:

unspecified mixture of cis- and trans-dichloroethene

DCA:

dichloroethane

DCAA:

dichloroacetic acid

1,1-DCE:

1,1-dichloroethene

DCM:

dichloromethane

DCPrpA:

dichloropropane

DCPrpE:

dichloropropene

DNAPL:

dense non-aqueous phase liquid

Dwt:

dry weight

E:

ethene

EA:

electron acceptor

ED:

electron donor

EPC:

epichlorohydrin or 3-chloro-1,2-epoxypropane

HCA:

hexachloroethane

HCBD:

hexachlorochloro-1,3-butadiene

HCFC:

hydrochlorofluorocarbons

HeCPrpA:

hexachloropropane

HS-G:

glutathione

MMO:

methane monooxygenases

PCA:

pentachloroethane

PCBD:

pentachlorobutadiene

PCE:

perchloroethylene

pMMO:

membrane-bound methane monooxygenases

PRB:

permeable reactive barrier

sMMO:

soluble methane monooxygenases

Tc:

transformation capacity

TCA:

trichloroethane

TCAA:

trichloroacetic acid

TCBD:

trichlorobutadiene

TCE:

trichloroethylene

TCPrpA:

trichloropropane

TeCA:

tetrachloroethane

tDCE:

trans-dichloroethene

TeCBD:

tetrachlorobutadiene

TFAA:

trifluoroacetic acid

ToMO:

toluene/ortho-xylene monoxygenase

UASB:

upflow anaerobic sludge bed reactor

VC:

vinyl chloride

VSS:

volatile suspended solids.

References

  • L Alvarez-Cohen PL McCarty (1991) ArticleTitleProduct toxicity and cometabolic competitive-inhibition modeling of chloroform and trichloroethylene transformation by methanotrophic resting cells Appl. Environ. Microbiol. 57 1031–1037

    Google Scholar 

  • L Alvarez-Cohen GE Speitel SuffixJr (2001) ArticleTitleKinetics of aerobic cometabolism of chlorinated solvents Biodegradation 12 105–126

    Google Scholar 

  • K Abrahamsson A Ekdahl J Collen M Pedersen (1995) ArticleTitleMarine algae–A source of trichloroethylene and perchloroethylene Limnol. Oceanogr. 40 1321–1326

    Google Scholar 

  • L Alvarez-Cohen PL McCarty E Boulygina RS Hanson GA Brusseau HC Tsien (1992) ArticleTitleCharacterization of a methane-utilizing bacterium from a bacterial consortium that rapidly degrades trichloroethylene and chloroform Appl. Environ. Microbiol. 58 1886–1893

    Google Scholar 

  • DT Adamson JM McDade JB Hughes (2003) ArticleTitleInoculation of DNAPL source zone to initiate reductive dechlorination of PCE Environ. Sci. Technol. 37 2525–2533

    Google Scholar 

  • D Arciero T Vanelli M Logan AB Hooper (1989) ArticleTitleDegradation of trichloroethylene by the ammonia oxidizing bacterium Nitrosomonas europaea Biochem. Biophys. Res. Commun. 159 640–643

    Google Scholar 

  • DJ Arp CM Yeager MR Hyman (2001) ArticleTitleMolecular and cellular fundamentals of aerobic cometabolism of trichloroethylene Biodegradation 12 81–103

    Google Scholar 

  • E Arvin (1991) ArticleTitleBiodegradation kinetics of chlorinated aliphatic hydrocarbons with methane oxidizing bacteria in an aerobic fixed biofilm reactor Water Res. 25 873–882

    Google Scholar 

  • N Assaf-Anid KY Lin (2002) ArticleTitleCarbon tetrachloride reduction by Fe2+, S2−, and FeS with vitamin B-12 as organic amendment J. Environ. Eng.-ASCE 128 94–99

    Google Scholar 

  • F Aulenta M Majone M Beccari L Perna V Tandoi (2003) ArticleTitleEnrichment from activated sludges of aerobic mixed cultures capable to degrade vinyl chloride (VC) as the sole carbon source Ann. Chim. 93 337–346

    Google Scholar 

  • CE Aziz G Georgiou GE Speitel (1999) ArticleTitleCometabolism of chlorinated solvents and binary chlorinated solvent mixtures using M trichosporium OB3b PP358. Biotechnol. Bioeng. 65 100–107

    Google Scholar 

  • R Bader T Leisinger (1994) ArticleTitleIsolation and characterization of the Methylophilus sp strain DM11 gene encoding dichloromethane dehalogenase/glutathione S-transferase. J. Bacteriol. 176 3466–3473

    Google Scholar 

  • JL Baeseman PJ Novak (2001) ArticleTitleEffects of various environmental conditions on the transformation of chlorinated solvents by Methanosarcina thermophila cell exudates Biotechnol. Bioeng. 75 634–641

    Google Scholar 

  • DM Bagley JM Gossett (1990) ArticleTitleTetrachloroethene transformation to trichloroethene and cis-1,2-dichloroethene by sulfate reducing enrichment cultures Appl. Environ. Microbiol. 56 2511–2516

    Google Scholar 

  • DM Bagley JM Gossett (1995) ArticleTitleChloroform degradation in methanogenic methanol enrichment cultures and by Methanosarcina barkeri 227 Appl. Environ. Microbiol. 61 3195–3201

    Google Scholar 

  • EW Bartnicki CE Castro (1994) ArticleTitleBiodehalogenation–Rapid oxidative-metabolism of monohalomethanes and polyhalomethanes by Methylosinus trichosporium Ob-3b Environ. Toxicol. Chem. 13 241–245

    Google Scholar 

  • MR Bauer JB Yavitt (1996) ArticleTitleProcesses and mechanisms controlling consumption of CFC-11 and CFC-12 by peat from a conifer-swamp and black spruce-tamarack bog in New York State Chemosphere 32 759–768

    Google Scholar 

  • JG Becker DL Freedman (1994) ArticleTitleUse of cyanocobalamin to enhance anaerobic biodegradation of chloroform Environ. Sci. Technol. 28 1942–1949

    Google Scholar 

  • N Belay L Daniels (1987) ArticleTitleProduction of ethane, ethylene and acetylene from halogenated hydrocarbons by methanogenic bacteria Appl. Environ. Microbiol. 53 1604–1610

    Google Scholar 

  • AG Berends CG de Rooij S Shin-ya RS Thompson (1999) ArticleTitleBiodegradation and ecotoxicity of HFCs and HCFCs Arch. Environ. Contam. Toxicol. 36 146–151

    Google Scholar 

  • M Berg SR Muller J Muhlemann A Wiedmer RP Schwarzenbach (2000) ArticleTitleConcentrations and mass fluxes of chloroacetic acids and trifluoroacetic acid in rain and natural waters in Switzerland Environ. Sci. Technol. 34 2675–2683

    Google Scholar 

  • G Birner M Werner E Rosner C Mehler W Dekant (1998) ArticleTitleBiotransformation, excretion, and nephrotoxicity of the hexachlorobutadiene metabolite (E)-N-acetyl-S-(1,2,3,4,4- pentachlorobutadienyl)-l-cysteine sulfoxide Chem. Res. Toxicol. 11 750–757

    Google Scholar 

  • PL Bjerg K Rugge J Cortsen PH Nielsen TH Christensen (1999) ArticleTitleDegradation of aromatic and chlorinated aliphatic hydrocarbons in the anaerobic part of the Grindsted landfill leachate plume: In situ microcosm and laboratory batch experiments Ground Water 37 13–121

    Google Scholar 

  • RS Booker SG Pavlostathis (2000) ArticleTitleMicrobial reductive dechlorination of hexachloro-1,3-butadiene in a methanogenic enrichment culture Water Res. 34 4437–4445

    Google Scholar 

  • TNP Bosma FHM Cottaar MA Posthumus CJ Teunis A Vanveldhulzen G Schraa AJB Zehnder (1994) ArticleTitleComparison of reductive dechlorination of hexachloro-1,3- butadiene in Rhine sediment and model systems with hydroxocobalamin Environ. Sci. Technol. 28 1124–1128

    Google Scholar 

  • T Bosma J Damborsky G Stucki DB Janssen (2002) ArticleTitleBiodegradation of 1,2,3-trichloropropane through directed evolution and heterologous expression of a haloalkane dehalogenase gene Appl. Environ. Microbiol. 68 3582–3587

    Google Scholar 

  • T Bosma E Kruizinga EJ de Bruin GJ Poelarends DB Janssen (1999) ArticleTitleUtilization of trihalogenated propanes by Agrobacterium radiobacter AD1 through heterologous expression of the haloalkane dehalogenase from Rhodococcus sp strain m15-3. Appl. Environ. Microbiol. 65 4575–4581

    Google Scholar 

  • JB Boucquey P Renard P Amerlynck FP Modesto SN Agathos H Naveau EJ Nyns (1995) ArticleTitleHigh-rate continuous biodegradation of concentrated chlorinated aliphatics by a durable enrichment of methanogenic origin under carrier-dependent conditions Biotechnol. Bioeng. 47 298–307

    Google Scholar 

  • ACM Bourg C Mouvet DN Lerner (1992) ArticleTitleA review of the attenuation of trichloroethylene in soils and aquifers Q. J. Eng. Geol. 25 359–370

    Google Scholar 

  • EJ Bouwer PL McCarty (1983) ArticleTitleTransformations of 1-carbon and 2-carbon halogenated aliphatic organic-compounds under methanogenic conditions Appl. Environ. Microbiol. 45 1286–1294

    Google Scholar 

  • PM Bradley (2000) ArticleTitleMicrobial degradation of chloroethenes in groundwater systems Hydrogeol. J. 8 104–111

    Google Scholar 

  • PM Bradley (2003) ArticleTitleHistory and ecology of chloroethene biodegradation: A review Bioremediation J. 7 81–109

    Google Scholar 

  • PM Bradley FH Chapelle (1996) ArticleTitleAnaerobic mineralization of vinyl chloride in Fe(III)-reducing, aquifer sediments Environ. Sci. Technol. 30 2084–2086

    Google Scholar 

  • PM Bradley FH Chapelle (1997) ArticleTitleKinetics of DCE and VC mineralization under methanogenic and Fe(III)-reducing conditions Environ. Sci. Technol. 31 2692–2696

    Google Scholar 

  • PM Bradley FH Chapelle (2000) ArticleTitleAcetogenic microbial degradation of vinyl chloride Environ. Sci. Technol. 34 2761–2763

    Google Scholar 

  • PM Bradley FH Chapelle DR Lovley (1998a) ArticleTitleHumic acids as electron acceptors for anaerobic microbial oxidation of vinyl chloride and dichloroethene Appl. Environ. Microbiol. 64 3102–3105

    Google Scholar 

  • PM Bradley JE Landmeyer RS Dinicola (1998b) ArticleTitleAnaerobic oxidation of [1,2-C14]-dichloroethene under Mn(IV)- reducing conditions Appl. Environ. Microbiol. 64 1560–1562

    Google Scholar 

  • SA Brausstromeyer R Hermann AM Cook T Leisinger (1993) ArticleTitleDichloromethane as the sole carbon source for an acetogenic mixed culture and isolation of a fermentative, dichloromethane-degrading bacterium Appl. Environ. Microbiol. 59 3790–3797

    Google Scholar 

  • JL Bullister BS Lee (1995) ArticleTitleChlorofluorocarbon-11 removal in anoxic marine waters Geophys. Res. Lett. 22 1893–1896

    Google Scholar 

  • N Cabirol R Villemur J Perrier F Jacob B Fouillet P Chambon (1998) ArticleTitleIsolation of a methanogenic bacterium, Methanosarcina sp strain FR, for its ability to degrade high concentrations of perchloroethylene. Can. J. Microbiol. 44 1142–1147

    Google Scholar 

  • SR Carter WJ Jewell (1993) ArticleTitleBiotransformation of tetrachloroethylene by anaerobic attached- films at low-temperatures Water Res. 27 607–615

    Google Scholar 

  • CE Castro (1993) ArticleTitleBiodehalogenation: The kinetics and rates of the microbial cleavage of carbon-halogen bonds Environ. Toxicol. Chem. 12 1609–1618

    Google Scholar 

  • CE Castro NO Belser (1966) ArticleTitleSoil fumigant hydrolysis–hydrolysis of cis- and trans-1,3-dichloropropene in wet soil J. Agri. Food Chem. 14 69–70

    Google Scholar 

  • CE Castro DM Riebeth NO Belser (1992a) ArticleTitleBiodehalogenation: The metabolism of vinyl chloride by Methylosinus trichosporium Ob3B Environ. Toxicol. Chem. 11 749–755

    Google Scholar 

  • CE Castro RS Wade DM Riebeth EW Bartnicki NO Belser (1992b) ArticleTitleBiodehalogenation–rapid metabolism of vinyl-chloride by a soil Pseudomonas sp direct hydrolysis of a vinyl C-Cl bond. Environ. Toxicol. Chem. 11 757–764

    Google Scholar 

  • HL Chang L Alvarez-Cohen (1995) ArticleTitleTransformation capacities of chlorinated organics by mixed cultures enriched on methane, propane, toluene, or phenol Biotechnol. Bioeng. 45 440–449

    Google Scholar 

  • HL Chang L Alvarez-Cohen (1996) ArticleTitleBiodegradation of individual and multiple chlorinated aliphatic hydrocarbons by methane-oxidizing cultures Appl. Environ. Microbiol. 62 3371–3377

    Google Scholar 

  • W Chang CS Criddle (1995) ArticleTitleBiotransformation of HCFC-22, HCFC-142b, HCFC-123, and HFC-134a by methanotrophic mixed culture MM1 Biodegradation. 6 1–9

    Google Scholar 

  • S Chauhan P Barbieri TK Wood (1998) ArticleTitleOxidation of trichloroethylene, 1,1-dichloroethylene, and chloroform by toluene/o-xylene monooxygenase from Pseudomonas stutzeri OX1 Appl. Environ. Microbiol. 64 3023–3024

    Google Scholar 

  • G Chen (2004) ArticleTitleReductive dehalogenation of tetrachloroethylene by microorganisms: Current knowledge and application strategies Appl. Microbiol. Biotechnol. 63 373–377

    Google Scholar 

  • C Chen BS Ballapragada JA Puhakka SE Strand JF Ferguson (1999) ArticleTitleAnaerobic transformation of 1,1,1-trichloroethane by municipal digester sludge Biodegradation 10 297–305

    Google Scholar 

  • C Chen JA Puhakka JF Ferguson (1996) ArticleTitleTransformations of 1,1,2,2-tetrachloroethane under methanogenic conditions Environ. Sci. Technol. 30 542–547

    Google Scholar 

  • Christiansen N, Christensen SR, Arvin E & Ahring BK (1997) Transformation of tetrachloroethylene with anaerobic sludge blanket reactor. Appl. Microbiol. Biotechnol.

  • KH Chu WJ Jewell (1994) ArticleTitleTreatment of tetrachloroethylene with anaerobic attached film process J. Environ. Eng.-ASCE 120 58–71

    Google Scholar 

  • KY Chung DW Dickson LT Ou (1999) ArticleTitleDifferential enhanced degradation of cis- and trans-1,3-D in soil with a history of repeated field applications of 1,3-D J. Environ. Sci. Health 34 749–768

    Google Scholar 

  • PV Cline DR Viste (1985) ArticleTitleMigration and degradation patterns of volatile organic compounds Waste Manag. Res. 3 351–360

    Google Scholar 

  • NV Coleman JC Spain (2003a) ArticleTitleEpoxyalkane: Coenzyme M transferase in the ethene and vinyl chloride biodegradation pathways of Mycobacterium strain JS60 J. Bacteriol. 185 5536–5545

    Google Scholar 

  • NV Coleman JC Spain (2003b) ArticleTitleDistribution of the coenzyme m pathway of epoxide metabolism among ethene- and vinyl chloride-degrading Mycobacterium strains Appl. Environ. Microbiol. 69 6041–6046

    Google Scholar 

  • NV Coleman TE Mattes JM Gossett JC Spain (2002a) ArticleTitlePhylogenetic and kinetic diversity of aerobic vinyl chloride-assimilating bacteria from contaminated sites Appl. Environ. Microbiol. 68 6162–6171

    Google Scholar 

  • NV Coleman TE Mattes JM Gossett JC Spain (2002b) ArticleTitleBiodegradation of cis-dichloroethene as the sole carbon source by a beta-Proteobacterium Appl. Environ. Microbiol. 68 2726–2730

    Google Scholar 

  • L Cottrell BT Golding T Munter WP Watson (2001) ArticleTitleIn vitro metabolism of chloroprene: Species differences, epoxide stereochemistry and a de-chlorination pathway Chem. Res. Toxicol. 14 1552–1562

    Google Scholar 

  • C Coulter JTG Hamilton WC McRoberts L Kulakov MJ Larkin DB Harper (1999) ArticleTitleHalomethane: bisulfide/halide ion methyltransferase, an unusual corrinoid enzyme of environmental significance isolated from an aerobic methylotroph using chloromethane as the sole carbon source Appl. Environ. Microbiol. 65 4301–4312

    Google Scholar 

  • CS Criddle JT Dewitt PL McCarty (1990a) ArticleTitleReductive dehalogenation of carbon tetrachloride by Escherichia coli K-12 Appl. Environ. Microbiol. 56 3247–3254

    Google Scholar 

  • CS Criddle JT Dewitt D Grbic Galic PL McCarty (1990b) ArticleTitleTransformation of carbon-tetrachloride by Pseudomonas spstrain KC under denitrification conditions. Appl. Environ. Microbiol. 56 3240–3246

    Google Scholar 

  • AM Cupples AM Spormann PL McCarty (2003) ArticleTitleGrowth of a Dehalococcoides-like microorganism on vinyl chloride and cis-dichloroethene as electron acceptors as determined by competitive PCR Appl. Environ. Microbiol. 69 953–959

    Google Scholar 

  • JW Davis CL Carpenter (1990) ArticleTitleAerobic biodegradation of vinyl-chloride in groundwater samples Appl. Environ. Microbiol. 56 3878–3880

    Google Scholar 

  • A Davis GG Fennemore C Peck CR Walker J McIlwraith S Thomas (2003) ArticleTitleDegradation of carbon tetrachloride in a reducing groundwater environment: Implications for natural attenuation Appl. Geochem. 18 503–525

    Google Scholar 

  • JH De Best A Hage HJ Doddema DB Janssen W Harder (1999) ArticleTitleComplete transformation of 1,1,1-trichloroethane to chloroethane by a methanogenic mixed population Appl. Microbiol. Biotechnol. 51 277–283

    Google Scholar 

  • JH De Best H Jongema A Weijling HJ Doddema DB Janssen W Harder (1997b) ArticleTitleTransformation of 1,1,1-trichloroethane in an anaerobic packed-bed reactor at various concentrations of 1,1,1-trichloroethane, acetate and sulfate Appl. Microbiol. Biotechnol. 48 417–423

    Google Scholar 

  • JH De Best E Salminen HJ Doddema DB Janssen W Harder (1997a) ArticleTitleTransformation of carbon tetrachloride under sulfate reducing conditions Biodegradation. 8 429–436

    Google Scholar 

  • JH De Best J Ultee A Hage HJ Doddema DB Janssen W Harder (2000) ArticleTitleDichloromethane utilization in a packed-bed reactor in the presence of various electron acceptors Water Res. 34 566–574

    Google Scholar 

  • H De Wever JR Cole MR Fettig DA Hogan JM Tiedje (2000) ArticleTitleReductive dehalogenation of trichloroacetic acid by Trichlorobacter thiogenes gen nov., sp. nov. Appl. Environ. Microbiol. 66 2297–2301

    Google Scholar 

  • S De Wildeman W Verstraete (2003) ArticleTitleThe quest for microbial reductive dechlorination of C-2 to C-4 chloroalkanes is warranted Appl. Microbiol. Biotechnol. 61 94–102

    Google Scholar 

  • S De Wildeman G Diekert H van Langenhove W Verstraete (2003a) ArticleTitleStereoselective microbial dehalorespiration with vicinal dichlorinated alkanes Appl. Environ. Microbiol. 69 5643–5647

    Google Scholar 

  • S De Wildeman A Neumann G Diekert W Verstraete (2003b) ArticleTitleGrowth-substrate dependent dechlorination of 1,2-dichloroethane by a homoacetogenic bacterium Biodegradation 14 241–247

    Google Scholar 

  • S De Wildeman H Nollet H van Langenhove W Verstraete (2001) ArticleTitleReductive biodegradation of 1,2-dichloroethane by methanogenic granular sludge in lab-scale UASB reactors Adv. Environ. Res. 6 17–27

    Google Scholar 

  • S De Wildeman G Linthout H van Langenhove W Verstraete (2004) ArticleTitleComplete lab-scale detoxification of groundwater containing 1,2-dichloroethane Appl. Microbiol. Biotechnol. 63 609–612

    Google Scholar 

  • WP Debruin MJJ Kotterman MA Posthumus G Schraa AJB Zehnder (1992) ArticleTitleComplete biological reductive transformation of tetrachloroethene to ethane. Appl. Environ.Microbiol. 58 1996–2000

    Google Scholar 

  • MF Deflaun BD Ensley RJ Steffan (1992) ArticleTitleBiological oxidation of hydrochlorofluorocarbons (HCFCs) by a methanotrophic bacterium Bio-Technol. 10 1576–1578

    Google Scholar 

  • A Deipser (1998) ArticleTitleBiodegradation of volatile CFCs, H-CFCs and VC in compost and marl Waste Manage. Res. 16 330–341

    Google Scholar 

  • A Deipser R Stegmann (1997) ArticleTitleBiological degradation of VCCs and CFCs under simulated anaerobic landfill conditions in laboratory test digesters Environ. Sci. Pollut. Res. 4 209–216

    Google Scholar 

  • BA Denovan SE Strand (1992) ArticleTitleBiological degradation of chlorofluorocarbons in anaerobic environments Chemosphere 24 935–940

    Google Scholar 

  • JF Devlin D Muller (1999) ArticleTitleField and laboratory studies of carbon tetrachloride transformation in a sandy aquifer under sulfate reducing conditions Environ. Sci. Technol. 33 1021–1027

    Google Scholar 

  • A Diez MJ Alvarez MI Prieto JM Bautista A Garrido Pertierra (1995) ArticleTitleMonochloroacetate dehalogenase activities of bacterial strains isolated from soil Can. J. Microbiol. 41 730–739

    Google Scholar 

  • A Diez MI Prieto MJ Alvarez JM Bautista A Garrido A Puyet (1996b) ArticleTitleImproved catalytic performance of a 2-haloacid dehalogenase from Azotobacter sp by ion-exchange immobilisation. Biochem. Biophys. Res. Commun. 220 828–833

    Google Scholar 

  • A Diez NI Prieto MJ Alvarez JM Bautista A Puyet A Garrido-Pertierra (1996a) ArticleTitlePurification and properties of a high-affinity L-2-haloacid dehalogenase from Azotobacter sp strain RC26. Lett. Appl. Microbiol. 23 279–282

    Google Scholar 

  • RMM Diks SPP Ottengraf (1991) ArticleTitleVerification studies of a simplified model for the removal of dichloromethane from waste gases using a biological trickling filter 1. Bioprocess Eng. 6 93–99

    Google Scholar 

  • TD Distefano (1999) ArticleTitleThe effect of tetrachloroethene on biological dechlorination of vinyl chloride: Potential implication for natural bioattenuation Water Res. 33 1688–1694

    Google Scholar 

  • TD Distefano JM Gossett SH Zinder (1991) ArticleTitleReductive dechlorination of high-concentrations of tetrachloroethene to ethene by an anaerobic enrichment culture in the absence of methanogenesis Appl. Environ. Microbiol. 57 2287–2292

    Google Scholar 

  • NV Doronina AP Sokolov YA Trotsenko (1996) ArticleTitleIsolation and initial characterization of aerobic chloromethane-utilizing bacteria FEMS Microbiol. Lett. 142 179–183

    Google Scholar 

  • NV Doronina YA Trotsenko VI Krausova NE Suzina (1998) ArticleTitleParacoccus methylutens spnov.–a new aerobic facultatively methylotrophic bacterium utilizing dichloromethane. Syst. Appl. Microbiol. 21 230–236

    Google Scholar 

  • NV Doronina YA Trotsenko TP Tourova BB Kuznetsov T Leisinger (2000) ArticleTitleMethylopila helvetica spnov and Methylobacterium dichloromethanicum sp. nov.–Novel aerobic facultatively methylotrophic bacteria utilizing dichloromethane. Syst. Appl. Microbiol. 23 210–218

    Google Scholar 

  • NV Doronina YA Trotsenko TP Tourova BB Kuznetsov T Leisinger (2001) ArticleTitleAlbibacter methylovorans gen nov., sp. nov., a novel aerobic, facultatively autotrophic and methylotrophic bacterium that utilizes dichloromethane. Int. J. Syst. Evol. Microbiol. 51 1051–1058

    Google Scholar 

  • M Duhamel SD Wehr L Yu H Rizvi D Seepersad S Dworatzek EE Cox EA Edwards (2002) ArticleTitleComparison of anaerobic dechlorinating enrichment cultures maintained on tetrachloroethene, trichloroethene, cis-dichloroethene and vinyl chloride Water Res. 36 4193–4202

    Google Scholar 

  • RS Dungan JY Gan SR Yates (2001) ArticleTitleEffect of temperature, organic amendment rate and moisture content on the degradation of 1,3-dichloropropene in soil Pest Manag. Sci. 57 1107–1113

    Google Scholar 

  • C Egli R Scholtz AM Cook T Leisinger (1987) ArticleTitleAnaerobic dechlorination of tetrachloromethane and 1,2-dichloroethane to degradable products by pure cultures of Desulfobacterium sp and Methanobacterium sp. FEMS Microbiol. Lett. 43 257–261

    Google Scholar 

  • C Egli S Stromeyer AM Cook T Leisinger (1990) ArticleTitleTransformation of tetrachloromethane and trichloromethane to carbon dioxide by anaerobic bacteria is a non-enzymic process FEMS Microbiol. Lett. 68 207–212

    Google Scholar 

  • C Egli T Tschan R Scholtz AM Cook T Leisinger (1988) ArticleTitleTransformation of tetrachloromethane to dichloromethane and carbon-dioxide by Acetobacterium woodii Appl. Environ. Microbiol. 54 2819–2824

    Google Scholar 

  • C Egli M Thuer D Suter AM Cook T Leisinger (1989) ArticleTitleMonochloroacetic and dichloroacetic acids as carbon and energy-sources for a stable, methanogenic mixed culture Arch. Microbiol. 152 218–223

    Google Scholar 

  • J Ejlertsson E Johansson A Karlsson U Meyerson BH Svensson (1996) ArticleTitleAnaerobic degradation of xenobiotics by organisms from municipal solid waste under landfilling conditions Ant. Leeuwen. Int. J. Gen. Mol. Microbiol. 69 67–74

    Google Scholar 

  • DA Ellis ML Hanson PK Sibley T Shahid NA Fineberg KR Solomon DCG Muir SA Mabury (2001) ArticleTitleThe fate and persistence of trifluoroacetic and chloroacetic acids in pond waters Chemosphere 42 309–318

    Google Scholar 

  • DE Ellis EJ Lutz JM Odom RJ Buchanan CL Bartlett MD Lee MR Harkness KA Deweerd (2000) ArticleTitleBioaugmentation for accelerated in situ anaerobic bioremediation Environ. Sci. Technol. 34 2254–2260

    Google Scholar 

  • RL Ely KJ Williamson MR Hyman DJ Arp (1997) ArticleTitleCometabolism of chlorinated solvents by nitrifying bacteria: Kinetics, substrate interactions, toxicity effects, and bacterial response Biotechnol. Bioeng. 54 520–534

    Google Scholar 

  • SA Ensign MR Hyman DJ Arp (1992) ArticleTitleCometabolic degradation of chlorinated alkenes by alkene monooxygenase in a propylene-grown Xanthobacter strain Appl. Environ. Microbiol. 58 3038–3046

    Google Scholar 

  • BZ Fathepure SA Boyd (1988a) ArticleTitleDependence of tetrachloroethylene dechlorination on methanogenic substrate consumption by Methanosarcina sp strain DCM. Appl. Environ. Microbiol. 54 2976–2980

    Google Scholar 

  • BZ Fathepure SA Boyd (1988b) ArticleTitleReductive dechlorination of perchloroethylene and the role of methanogens FEMS Microbiol. Lett. 49 149–156

    Google Scholar 

  • BZ Fathepure TM Vogel (1991) ArticleTitleComplete degradation of polychlorinated hydrocarbons by a 2–stage biofilm reactor Appl. Environ. Microbiol. 57 3418–3422

    Google Scholar 

  • BZ Fathepure JM Tiedje (1994) ArticleTitleReductive dechlorination of tetrachloroethylene by a chlorobenzoate-enriched biofilm reactor Environ. Sci. Technol. 28 746–752

    Google Scholar 

  • BZ Fathepure JP Nengu SA Boyd (1987) ArticleTitleAnaerobic bacteria that dechlorinate perchloroethene Appl. Environ. Microbiol. 53 2671–2674

    Google Scholar 

  • DE Fennell AB Carroll JM Gossett SH Zinder (2001) ArticleTitleAssessment of indigenous reductive dechlorinating potential at a TCE-contaminated site using microcosms, polymerase chain reaction analysis, and site data Environ. Sci. Technol. 35 1830–1839

    Google Scholar 

  • JF Ferguson JMH Pietari (2000) ArticleTitleAnaerobic transformations and bioremediation of chlorinated solvents Environ. Pollut. 107 209–215

    Google Scholar 

  • S Fetzner (1998) ArticleTitleBacterial dehalogenation Appl. Microbiol. Biotechnol. 50 633–657

    Google Scholar 

  • WP Flanagan (1998) ArticleTitleBiodegradation of dichloromethane in a granular activated carbon fluidized bed reactor Water Environ. Res. 70 60–66

    Google Scholar 

  • ST Forczek M Matucha H Uhlirova J Albrechtova K Fuksova HP Schroder (2001) ArticleTitleBiodegradation of trichloroacetic acid in Norway spruce/soil system Biol. Plant. 44 317–320

    Google Scholar 

  • BG Fox JG Borneman LP Wacket JD Lipscomb (1990) ArticleTitleHaloalkene oxidation by the soluble methane monooxygenase from Methylosinus trichosporium OB3b: Mechanistic and environmental implications Biochem. 29 6419–6427

    Google Scholar 

  • DL Freedman JM Gossett (1991) ArticleTitleBiodegradation of dichloromethane and its utilization as a growth substrate under methanogenic conditions Appl. Environ. Microbiol. 57 2847–2857

    Google Scholar 

  • DL Freedman SD Herz (1996) ArticleTitleUse of ethylene and ethane as primary substrates for aerobic cometabolism of vinyl chloride Water Environ. Res. 68 320–328

    Google Scholar 

  • DL Freedman CR Smith DR Noguera (1997) ArticleTitleDichloromethane biodegradation under nitrate-reducing conditions Water Environ. Res. 69 115–122

    Google Scholar 

  • DL Freedman AS Danko MF Verce (2001) ArticleTitleSubstrate interactions during aerobic biodegradation of methane, ethene, vinyl chloride and 1,2-dichloroethenes Water Sci. Technol. 43 333–340

    Google Scholar 

  • DD Friday RJ Portier (1991) ArticleTitleDevelopment of an immobilized microbe bioreactor for VOC applications Environ. Progress. 10 30–39

    Google Scholar 

  • LM Frietos dos Santos AG Livingstone (1995) ArticleTitleNovel membrane bioreactor for detoxification of VOC wastewaters: Biodegradation of 1,2-dichloroethane Water Res. 29 179–194

    Google Scholar 

  • R Galli (1987) ArticleTitleBiodegradation of dichloromethane in waste-water using a fluidized-bed bioreactor Appl. Microbiol. Biotechnol. 27 206–213

    Google Scholar 

  • R Galli PL McCarty (1989) ArticleTitleBiotransformation of 1,1,1-trichloroethane, trichloromethane, and tetrachloromethane by a Clostridium sp Appl. Environ. Microbiol. 55 837–844

    Google Scholar 

  • CJ Gantzer LP Wackett (1991) ArticleTitleReductive dechlorination catalyzed by bacterial transition- metal coenzymes Environ. Sci. Technol. 25 715–722

    Google Scholar 

  • H Garant LR Lynd (1996) ArticleTitlePerchloroethylene utilization by methanogenic fed-batch cultures–Acclimation and degradation Appl. Biochem. Biotechnol. 57–8 895–904

    Google Scholar 

  • CG Gemmell HL Jensen (1964) ArticleTitleSome studies on trichloroacetate-decomposing soil bacteria Archiv Fur Mikrobiol. 48 386–392

    Google Scholar 

  • J Gerritse V Renard J Visser JC Gottschal (1995) ArticleTitleComplete degradation of tetrachloroethene by combining anaerobic dechlorinating and aerobic methanotrophic enrichment cultures Appl. Microbiol. Biotechnol. 43 920–928

    Google Scholar 

  • J Gerritse V Renard TMP Gomes PA Lawson MD Collins JC Gottschal (1996) ArticleTitleDesulfitobacterium sp strain PCE1, an anaerobic bacterium that can grow by reductive dechlorination of tetrachloroethene or ortho-chlorinated phenols. Arch. Microbiol. 165 132–140

    Google Scholar 

  • J Gerritse G Kloetstra A Borger G Dalstra A Alphenaar JC Gottschal (1997) ArticleTitleComplete degradation of tetrachloroethene in coupled anoxic and oxic chemostats Appl. Microbiol. Biotechnol. 48 553–562

    Google Scholar 

  • O Ghisalba (1983) ArticleTitleChemical wastes and their biodegradation Experentia 39 1247–1257

    Google Scholar 

  • D Gisi L Willi H Traber T Leisinger S Vuilleumier (1998) ArticleTitleEffects of bacterial host and dichloromethane dehalogenase on the competitiveness of methylotrophic bacteria growing with dichloromethane Appl. Environ. Microbiol. 64 1194–1202

    Google Scholar 

  • G Glod U Brodmann W Angst C Holliger RP Schwarzenbach (1997) ArticleTitleCobalamin-mediated reduction of cis- and trans-dichloroethene, 1,1-dichloroethene, and vinyl chloride in homogeneous aqueous solution: Reaction kinetics and mechanistic considerations Environ. Sci. Technol. 31 3154–3160

    Google Scholar 

  • R Govind PA Flaherty RA Dobbs (1991) ArticleTitleFate and effects of semivolatile organic pollutants during anaerobic sludge digestion Water Research 5 547–556

    Google Scholar 

  • GW Gribble (2003) ArticleTitleThe diversity of naturally produced organohalogens Chemosphere 52 289–297 Occurrence Handle10.1016/S0045-6535(03)00207-8 Occurrence Handle1:CAS:528:DC%2BD3sXjsVGnsLo%3D Occurrence Handle12738253

    Article  CAS  PubMed  Google Scholar 

  • SR Guiot X Kuang C Beaullieu A Corriveau J Hawari (1995) Anaerobic and aerobic/anaerobic treatment for tetrachloroethylene (PCE) RE Hinchee A Leeson L Semprini (Eds) Third International In Situ and On Site Bioreclamation Symposium Batelle Press Richland, Ca

    Google Scholar 

  • M Gupta A Gupta MT Suidan GD Sayles (1996) ArticleTitleBiotransformation rates of chloroform under anaerobic conditions 2. Sulfate reduction. Water Res. 30 1387–1394

    Google Scholar 

  • BD Habeck KL Sublette (1995) ArticleTitleReductive dechlorination of tetrachloroethylene (PCE) catalyzed by cyanocobalamin Appl. Biochem. Biotechnol. 51–2 747–759

    Google Scholar 

  • JC Hage S Hartmans (1999) ArticleTitleMonooxygenase-mediated 1,2-dichloroethane degradation by Pseudomonas sp strain DCA1. Appl. Environ. Microbiol. 65 2466–2470

    Google Scholar 

  • JC Hage FDG Kiestra S Hartmans (2001) ArticleTitleCo-metabolic degradation of chlorinated hydrocarbons by Pseudomonas sp strain DCA1. Appl. Microbiol. Biotechnol. 57 548–554

    Google Scholar 

  • KJ Hageman JD Istok JA Field TE Buscheck L Semprini (2001) ArticleTitleIn situ anaerobic transformation of trichlorofluoroethene in trichloroethene-contaminated groundwater Environ. Sci. Technol. 35 1729–1735

    Google Scholar 

  • N Hamamura C Page T Long L Semprini DJ Arp (1997) ArticleTitleChloroform cometabolism by butane-grown CF8, Pseudomonas butanovora, and Mycobacterium vaccae JOB5 and methane-grown Methylosinus trichosporium OB3b Appl. Environ. Microbiol. 63 3607–3613

    Google Scholar 

  • ML Hanson PK Sibley DA Ellis SA Mabury DCG Muir KR Solomon (2002) ArticleTitleEvaluation of monochloroacetic acid (MCA) degradation and toxicity to Lemna gibba, Myriophyllum spicatum, and Myriophyllum sibiricum in aquatic microcosms Aquat. Toxicol. 61 251–273

    Google Scholar 

  • JD Happell DWR Wallace (1998) ArticleTitleRemoval of atmospheric CCl4 under bulk aerobic conditions in groundwater and soils Environ. Sci. Technol. 32 1244–1252

    Google Scholar 

  • DJ Hardman JH Slater (1981) ArticleTitleThe dehalogenase complement of a soil pseudomonad grown in closed and open cultures on haloalkanoic acids J. Gen. Microbiol. 127 399–405

    Google Scholar 

  • AR Harker Y Kim (1990) ArticleTitleTrichloroethylene degradation by two independent aromatic-degrading pathways in Alcaligenes eutrophus JMP134 Appl. Environ. Microbiol. 56 1179–1181

    Google Scholar 

  • DB Harper (2000) ArticleTitleThe global chloromethane cycle: Biosynthesis, biodegradation and metabolic role Nat. Prod. Rep. 17 337–348

    Google Scholar 

  • S Hartmans J Tramper (1991) ArticleTitleDichloromethane removal from waste gases with a trickle-bed bioreactor Bioprocess Eng. 6 83–92

    Google Scholar 

  • S Hartmans JAM de Bont (1992) ArticleTitleAerobic vinyl-chloride metabolism in Mycobacterium-aurum L1 Appl. Environ. Microbiol. 58 1220–1226

    Google Scholar 

  • S Hartmans Bont JAM de J Tramper K Luyben (1985) ArticleTitleBacterial degradation of vinyl-chloride Biotechnol. Lett. 7 383–388

    Google Scholar 

  • S Hartmans A Kaptein J Tramper Bont JAM de (1992) ArticleTitleCharacterization of a Mycobacterium sp and a Xanthobacter sp. for the removal of vinyl-chloride and 1,2-dichloroethane from waste gases. Appl. Microbiol. Biotechnol. 37 796–801

    Google Scholar 

  • S Hartmans A Schmuckle AM Cook T Leisinger (1986) ArticleTitleMethyl chloride–Naturally-occurring toxicant and C-1 growth substrate J. Gen. Microbiol. 132 1139–1142

    Google Scholar 

  • A Hashimoto K Iwasaki N Nakasugi M Nakajima O Yagi (2002) ArticleTitleDegradation pathways of trichloro ethylene and 1,1,1-trichloroethane by Mycobacterium sp TA27. Biosci. Biotechnol. Biochem. 66 385–390

    Google Scholar 

  • SA Hashsham R Scholze DL Freedman (1995) ArticleTitleCobalamin-enhanced anaerobic biotransformation of carbon tetrachloride Environ. Sci. Technol. 29 2856–2863

    Google Scholar 

  • ZC Haston PL McCarty (1999) ArticleTitleChlorinated ethene half-velocity coefficients (Ks) for reductive dehalogenation Environ. Sci. Technol. 33 223–226

    Google Scholar 

  • R Hauck W Hegemann (2000) ArticleTitleAnaerobic degradation of 1,2-dichloropropane in batch and continuous culture Water Sci. Technol. 41 7–13

    Google Scholar 

  • JZ He KM Ritalahti MR Aiello FE Loffler (2003a) ArticleTitleComplete detoxification of vinyl chloride by an anaerobic enrichment culture and identification of the reductively dechlorinating population as a Dehalococcoides species Appl. Environ. Microbiol. 69 996–1003

    Google Scholar 

  • JZ He KM Ritalahti KL Yang SS Koenigsberg FE Loffler (2003b) ArticleTitleDetoxification of vinyl chloride to ethene coupled to growth of an anaerobic bacterium Nature 424 62–65

    Google Scholar 

  • U Heinze HJ Rehm (1993) ArticleTitleBiodegradation of dichloroacetic acid by entrapped and adsorptive immobilized Xanthobacter autotrophicus GJ10 Appl. Microbiol. Biotechnol. 40 158–164

    Google Scholar 

  • ER Hendrickson JA Payne RM Young MG Starr MP Perry S Fahnestock DE Ellis RC Ebersole (2002) ArticleTitleMolecular analysis of Dehalococcoides 16S ribosomal DNA from chloroethene-contaminated sites throughout north America and Europe Appl. Environ. Microbiol. 68 485–495

    Google Scholar 

  • SM Henry Galic D Grbic (1990) ArticleTitleEffect of mineral media on trichloroethylene oxidation by aquifer methanotrophs Microb. Ecol. 20 151–170

    Google Scholar 

  • SM Henry Galic D Grbic (1991) ArticleTitleInfluence of endogenous and exogenous electron donors and trichloroethylene oxidation toxicity on trichloroethylene oxidation by methanotrophic cultures from a groundwater aquifer Appl. Environ. Microbiol. 57 236–244

    Google Scholar 

  • JM Henson MV Yates JW Cochran (1989) ArticleTitleMetabolism of chlorinated methanes, ethanes and ethylenes by a mixed bacterial culture grown on methane J. Ind. Microbiol. 4 29–35

    Google Scholar 

  • B Herbst U Wiesmann (1996) ArticleTitleKinetics and reaction engineering aspects of the biodegradation of dichloromethane and dichloroethane Water Res. 30 1069–1076

    Google Scholar 

  • P Hirsch M Alexander (1960) ArticleTitleMicrobial decomposition of halogenated propionic and acetic acids Can. J. Microbiol. 6 241–249

    Google Scholar 

  • EJ Hoekstra (2003) ArticleTitleReview of concentrations and chemistry of trichloroacetate in the environment Chemosphere 52 355–369

    Google Scholar 

  • EJ Hoekstra Leer EWB de UAT Brinkman (1998a) ArticleTitleNatural formation of chloroform and brominated trihalomethanes in soil Environ. Sci. Technol. 32 3724–3729

    Google Scholar 

  • EJ Hoekstra FJM Verhagen JA Field EWB de Leer UAT Brinkman (1998b) ArticleTitleNatural production of chloroform by fungi Phytochem. 49 91–97

    Google Scholar 

  • P Hohener D Werner C Balsiger G Pasteris (2003) ArticleTitleWorldwide occurrence and fate of chlorofluorocarbons in groundwater Crit. Rev. Environ. Sci. Technol. 33 1–29

    Google Scholar 

  • C Holliger G Schraa (1994) ArticleTitlePhysiological meaning and potential for application of reductive dechlorination by anaerobic bacteria FEMS Microbiol Rev. 15 297–305

    Google Scholar 

  • C Holliger SWM Kengen G Schraa AJM Stams AJ Zehnder (1992a) ArticleTitleMethyl-coenzyme m reductase of Methanobacterium-thermoautotrophicum delta H catalyzes the reductive dechlorination of 1,2-dichloroethane to ethylene and chloroethane J. Bacteriol. 174 4435–4443

    Google Scholar 

  • C Holliger C Regeard G Diekert (2003) Dehalogenation by anaerobic bacteria MH Haggblom ID Bossert (Eds) Dehalogenation: Microbial processes and environmental applications (pp 115–157) Kluwer Academic Press Boston

    Google Scholar 

  • C Holliger G Schraa AJM Stams AJB Zehnder (1990) ArticleTitleReductive dechlorination of 1,2-dichloroethane and chloroethane by cell suspensions of methanogenic bacteria Biodegradat. 1 253–256

    Google Scholar 

  • C Holliger G Schraa AJM Stams AJB Zehnder (1993) ArticleTitleA highly purified enrichment culture couples the reductive dechlorination of tetrachloroethene to growth Appl. Environ. Microbiol. 59 2991–2997

    Google Scholar 

  • C Holliger G Wohlfarth G Diekert (1998) ArticleTitleReductive dechlorination in the energy metabolism of anaerobic bacteria FEMS Microbiol. Rev. 22 383–398

    Google Scholar 

  • C Holliger G Schraa E Stupperich AJM Stams AJB Zehnder (1992b) ArticleTitleEvidence for the Involvement of corrinoids and factor-F430 in the reductive dechlorination of 1,2-dichloroethane by Methanosarcina barkeri J. Bacteriol. 174 4427–4434

    Google Scholar 

  • GD Hopkins L. MP McCarty (1995) ArticleTitleField evaluation of in situ aerobic co-metabolism of trichloroethylene and three dichloroethylene isomers using phenol and toluene and as the primary substrates Environ. Sci. Technol. 29 1626–1637

    Google Scholar 

  • GD Hopkins L Semprini PL McCarty (1993) ArticleTitleMicrocosm and in-situ field studies of enhanced biotransformation of trichloroethylene by phenol-utilizing microorganisms Appl. Environ. Microbiol. 59 2277–2285

    Google Scholar 

  • C Horber N Christiansen E Arvin BK Ahring (1998) ArticleTitleImproved dechlorinating performance of upflow anaerobic sludge blanket reactors by incorporation of Dehalospirillum multivorans into granular sludge Appl. Environ. Microbiol. 64 1860–1863

    Google Scholar 

  • PH Howard RS Boelthing WF Jarvis WM Meylan EM Michalenko (1991) Handbook of Environmental Degradation Rates. Lewis Chelsea MI

    Google Scholar 

  • JY Hu ZS Wang WJ Ng SL Ong (1999) ArticleTitleDisinfection by-products in water produced by ozonation and chlorination Environ. Monitor. Assess. 59 81–93

    Google Scholar 

  • HG Hur MJ Sadowsky LP Wackett (1994) ArticleTitleMetabolism of chlorofluorocarbons and polybrominated compounds by Pseudomonas putida G786 (Phg-2) via an engineered metabolic pathway Appl. Environ. Microbiol. 60 4148–4154

    Google Scholar 

  • MR Hyman SA Ensign ME Rasche DJ Arp (1992) ArticleTitleDegradation of hydrochlorofluorocarbons HCFCs by Nitrosomonas europaea Abstracts Gen. Meeting Am. Soc. Microbiol. 92 264

    Google Scholar 

  • S Inguva GS Shreve (1999) ArticleTitleBiodegradation kinetics of trichloroethylene and 1,2-dichloroethane by Burkholderia (Pseudomonas) cepacia PR1(31) and Xanthobacter autotrophicus GJ10 Int. Biodeterior. Biodegrad. 43 57–61

    Google Scholar 

  • InstitutionalAuthorNameITRC (1999) Natural Attenuation of Chlorinated Solvents in Groundwater: Principles and Practices (ISB-3) Interstate Technology and Regulatory Council Washington, DC

    Google Scholar 

  • PE Jablonski JG Ferry (1992) ArticleTitleReductive dechlorination of trichloroethylene by the co-reduced Co dehydrogenase enzyme complex from Methanosarcina thermophila FEMS Microbiol. Lett. 96 55–59

    Google Scholar 

  • MHJ Jacobs AJ van denWijngaard M Pentenga DB Janssen (1991) ArticleTitleCharacterization of the epoxide hydrolase from an epichlorohydrin-degrading Pseudomonas sp Eur. J. Biochem. 202 1217–1222

    Google Scholar 

  • DJ Jahng TK Wood (1994) ArticleTitleTrichloroethylene and chloroform degradation by a Methylosinus trichosporium OB3b Appl. Environ. Microbiol. 60 2473–2482

    Google Scholar 

  • MO James R Cornett Z Yan GN Henderson PW Stacpoole (1997) ArticleTitleGlutathione-dependent conversion to glyoxylate, a major pathway of dichloroacetate biotransformation in hepatic cytosol from humans and rats, is reduced in dichloroacetate-treated rats Drug Metab. Dispos. 25 1223–1227

    Google Scholar 

  • DB Janssen F Pries JR Vanderploeg (1994) ArticleTitleGenetics and biochemistry of dehalogenating enzymes Annu. Rev. Microbiol. 48 163–191

    Google Scholar 

  • DB Janssen A Scheper L Dijkhuizen B Witholt (1985) ArticleTitleDegradation of halogenated aliphatic compounds by Xanthobacter autotrophicus GJ-10 Appl. Environ. Microbiol. 49 673–677

    Google Scholar 

  • DB Janssen G Grobben R Hoekstra R Oldenhuis B Witholt (1988) ArticleTitleDegradation of trans-1,2-dichloroethene by mixed and pure cultures of methanotrophic bacteria Appl. Microbiol. Biotechnol. 29 392–399

    Google Scholar 

  • Jensen HL (1957) Decomposition of chlorosubstituted aliphatic acids by soil bacteria. Can. J. Microbiol.

  • G Jin AJ Englande (1998) ArticleTitleCarbon tetrachloride biodegradation in a fixed-biofilm reactor and its kinetic study Water Sci. Technol. 38 155–162

    Google Scholar 

  • P Jitnuyanont LA Sayavedra-Soto L Semprini (2001) ArticleTitleBioaugmentation of butane-utilizing microorganisms to promote cometabolism of 1,1,1-trichloroethane in groundwater microcosms Biodegradation. 12 11–22

    Google Scholar 

  • CM Kao SE Lei (2000) ArticleTitleUsing a peat biobarrier to remediate PCE/TCE contaminated aquifers Water Res. 34 835–845

    Google Scholar 

  • N Kasai K Tsujimura K Unoura T Suzuki (1990) ArticleTitleDegradation of 2,3-dichloro-1-propanol by a Pseudomonas sp Agric. Biol. Chem. 54 3185–3190

    Google Scholar 

  • M Kastner (1991) ArticleTitleReductive Dechlorination of trichloroethylenes and tetrachloroethylenes depends on transition from aerobic to anaerobic conditions Appl. Environ. Microbiol. 57 2039–2046

    Google Scholar 

  • E Katsivela D Bonse A Kruger C Strompl A Livingston RM Wittich (1999) ArticleTitleAn extractive membrane biofilm reactor for degradation of 1,3- dichloropropene in industrial waste water Appl. Microbiol. Biotechnol. 52 853–862

    Google Scholar 

  • PC Kearney DD Kaufman DW Vonendt FS Guardia (1969) ArticleTitleTCA metabolism by soil microorganisms J. Agri. Food Chem. 17 581–584

    Google Scholar 

  • SWM Kengen CG Breidenbach A Felske AJM Stams G Schraa Vos WM de (1999) ArticleTitleReductive dechlorination of tetrachloroethene to cis-1,2-dichloroethene by a thermophilic anaerobic enrichment culture Appl. Environ. Microbiol. 65 2312–2316

    Google Scholar 

  • F Keppler R Eiden V Niedan J Pracht HF Scholer (2000) ArticleTitleHalocarbons produced by natural oxidation processes during degradation of organic matter Nature 403 298–301

    Google Scholar 

  • F Keppler R Borchers J Pracht S Rheinberger HF Scholer (2002) ArticleTitleNatural formation of vinyl chloride in the terrestrial environment Environ. Sci. Technol. 36 2479–2483

    Google Scholar 

  • S Keuning DB Janssen B Witholt (1985) ArticleTitlePurification of and characterization of hydrolytic haloalkane dehalogenase from Xanthobacter autotrophicus GJ-10 J. Bacteriol. 163 635–639

    Google Scholar 

  • MAK Khalil RA Rasmussen (1989) ArticleTitleThe potential of soils as a sink of chlorofluorocarbons and other man-made chlorocarbons Geophys. Res. Lett. 16 679–682

    Google Scholar 

  • MAK Khalil RA Rasmussen (2000) ArticleTitleSoil-atmosphere exchange of radioactively and chemically active gases Environ. Sci. Pollut. Res. 7 79–82

    Google Scholar 

  • MAK Khalil RA Rasmussen MX Wang L Ren (1990) ArticleTitleEmissions of trace gases from chinese rice fields and biogas generators methane dinitrogen oxide carbon monoxide carbon dioxide chlorocarbons and hydrocarbons Chemosphere 20 207–226

    Google Scholar 

  • A Khindaria TA Grover SD Aust (1995) ArticleTitleReductive dehalogenation of aliphatic halocarbons by lignin peroxidase of Phanerochaete chrysosporium Environ. Sci. Technol. 29 719–725

    Google Scholar 

  • S Kim FW Picardal (1999) ArticleTitleEnhanced anaerobic biotransformation of carbon tetrachloride in the presence of reduced iron oxides Environ. Toxicol. Chem. 18 2142–2150

    Google Scholar 

  • Y Kim DJ Arp L Semprini (2000) ArticleTitleChlorinated solvent cometabolism by butane-grown mixed culture J. Environ. Eng.-ASCE 126 934–942

    Google Scholar 

  • Y Kim DJ Arp L Semprini (2002) ArticleTitleKinetic and inhibition studies for the aerobic cometabolism of 1,1,1-trichloroethane, 1,1-dichloroethylene, and 1,1-dichloroethane by a butane-grown mixed culture Biotechnol. Bioeng. 80 498–508

    Google Scholar 

  • GM Klecka SJ Gonsior DA Markham (1990) ArticleTitleBiological transformations of 1,1,1-trichloroethane in subsurface soils and ground water Environ. Toxicol. Chem. 9 1437–1452

    Google Scholar 

  • GM Klecka CL Carpenter SJ Gonsior (1998) ArticleTitleBiological transformations of 1,2-dichloroethane in subsurface soils and groundwater J. Contam. Hydrol. 34 139–154

    Google Scholar 

  • RD Kleopfer DM Easley HJB B. TG Delhi DE Jackson CJ Wurrey (1985) ArticleTitleAnaerobic degradation of trichloroethylene in soil Environ. Sci. Technol. 19 277–280

    Google Scholar 

  • NJ Klier RJ West PA Donberg (1999) ArticleTitleAerobic biodegradation of dichloroethylenes in surface and subsurface soils Chemosphere 38 1175–1188

    Google Scholar 

  • SC Koh JP Bowman GS Sayler (1993) ArticleTitleSoluble methane monooxygenase production and trichloroethylene degradation by a type I methanotroph, Methylomonas methanica 68–1 Appl. Environ. Microbiol. 59 960–967

    Google Scholar 

  • D Kohler-Straub T Leisinger (1995) ArticleTitleDichloromethane as the sole carbon source for Hyphomicrobium sp strain DM2 under denitrifying conditions. Biodegrad. 6 229–235

    Google Scholar 

  • T Komatsu K Momonoi T Matsuo K Hanaki (1994) ArticleTitleBiotransformation of cis-1,2-dichloroethylene to ethylene and ethane under anaerobic conditions Water Sci. Technol. 30 75–84

    Google Scholar 

  • M Koob W Dekant (1992) ArticleTitleBiotransformation of the hexachlorobutadiene metabolites 1-(glutathione-S-yl)-pentachlorobutadiene and 1-(cystein-S-yl)-pentachlorobutadiene in the isolated perfused-rat-liver Xenobiotica 22 125–138

    Google Scholar 

  • BW Koons JL Baeseman PJ Novak (2001) ArticleTitleInvestigation of cell exudates active in carbon tetrachloride and chloroform degradation Biotechnol. Bioeng. 74 12–17

    Google Scholar 

  • P Koziollek D Bryniok HJ Knackmuss (1999) ArticleTitleEthene as an auxiliary substrate for the cooxidation of cis-1,2-dichloroethene and vinyl chloride Arch. Microbiol. 172 240–246

    Google Scholar 

  • A Kromann L Ludvigsen HJ Albrechtsen TH Christensen J Ejlertsson BH Svensson (1998) ArticleTitleDegradability of chlorinated aliphatic compounds in methanogenic leachates sampled at eight landfills Waste Manage. Res. 16 54–62

    Google Scholar 

  • UE Krone RK Thauer (1992) ArticleTitleDehalogenation of trichlorofluoromethane (CFC-11) by Methanosarcina barkeri FEMS Microbiol. Lett. 90 201–204

    Google Scholar 

  • UE Krone K Laufer RK Thauer HPC Hogenkamp (1989) ArticleTitleCoenzyme-F430 as a possible catalyst for the reductive dehalogenation of chlorinated-C1 hydrocarbons in methanogenic bacteria Biochem. 28 10061–10065

    Google Scholar 

  • UE Krone RK Thauer HPC Hogenkamp K Steinbach (1991) ArticleTitleReductive formation of carbon-monoxide from CCl4 and freon-11, freon-12, and freon-13 catalyzed by corrinoids Biochem. 30 2713–2719

    Google Scholar 

  • RL Kuntz LR Brown ME Zappi WT French (2003) ArticleTitleIsopropanol and acetone induces vinyl chloride degradation in Rhodococcus rhodochrous J. Ind. Microbiol. Biotechnol. 30 651–655

    Google Scholar 

  • AS Landa EM Sipkema J Weijma A Beenackers J Dolfing DB Janssen (1994) ArticleTitleCometabolic degradation of trichloroethylene by Pseudomonas cepacia G4 in a chemostat with toluene as the primary substrate Appl. Environ. Microbiol. 60 3368–3374

    Google Scholar 

  • JE Landmeyer PM Bradley JM Thomas (2000) ArticleTitleBiodegradation of disinfection byproducts as a potential removal process during aquifer storage recovery J. Am. Water Resour. Assoc. 36 861–867

    Google Scholar 

  • F Laturnus KF Haselmann T Borch C Gron (2002) ArticleTitleTerrestrial natural sources of trichloromethane (chloroform, CHCl3)–An overview Biogeochem. 60 121–139

    Google Scholar 

  • AJ Lecloux (2003) ArticleTitleScientific activities of Euro Chlor in monitoring and assessing naturally and man-made organohalogens Chemosphere 52 521–529

    Google Scholar 

  • BS Lee JL Bullister FA Whitney (1999a) ArticleTitleChlorofluorocarbon CFC-11 and carbon tetrachloride removal in Saanich Inlet, an intermittently anoxic basin Mar. Chem. 66 171–185

    Google Scholar 

  • MD Lee JM Odom RJ Buchanan (1998) ArticleTitleNew perspectives on microbial dehalogenation of chlorinated solvents: Insights from the field Annu. Rev. Microbiol. 52 423–452

    Google Scholar 

  • MD Lee L Sehayek BE Sleep TD Vandell (1999b) ArticleTitleInvestigation and remediation of a 1,2-dichloroethane spill part II: Documentation of natural attenuation Ground Water Monit. Remediat. 19 82–88

    Google Scholar 

  • T Leisinger R Bader R Hermann M Schmidt-Appert S Vuilleumier (1994) ArticleTitleMicrobes, enzymes and genes involved in dichloromethane utilization Biodegradation 5 237–248

    Google Scholar 

  • JM Lendvay FE Loffler M Dollhopf MR Aiello G Daniels BZ Fathepure M Gebhard R Heine R Helton J Shi R Krajmalnik-Brown CL Major MJ Barcelona E Petrovskis R Hickey JM Tiedje P Adriaens (2003) ArticleTitleBioreactive barriers: A comparison of bioaugmentation and biostimulation for chlorinated solvent remediation Environ. Sci. Technol. 37 1422–1431

    Google Scholar 

  • S Lesage S Brown KR Hosler (1992) ArticleTitleDegradation of chlorofluorocarbon-113 under anaerobic conditions Chemosphere 24 1225–1243

    Google Scholar 

  • S Lesage S Brown K Millar (1996) ArticleTitleVitamin B-12-catalyzed dechlorination of perchloroethylene present as residual DNAPL Ground Water Monit. Remediat. 16 76–85

    Google Scholar 

  • S Lesage RE Jackson MW Priddle PG Riemann (1990) ArticleTitleOccurrence and fate of organic-solvent residues in anoxic groundwater at the Gloucester landfill, Canada Environ. Sci. Technol. 24 559–566

    Google Scholar 

  • S Lesage RA McBride PM Cureton S Brown (1993) ArticleTitleFate of organic-solvents in landfill leachates under simulated field conditions and in anaerobic microcosms Waste Manage. Res. 11 215–226

    Google Scholar 

  • TA Lewis RL Crawford (1995) ArticleTitleTransformation of carbon-tetrachloride via sulfur and oxygen substitution by Pseudomonas sp strain KC. J. Bacteriol. 177 2204–2208

    Google Scholar 

  • TA Lewis A Paszczynski SW Gordon-Wylie S Jeedigunta CH Lee RL Crawford (2001) ArticleTitleCarbon tetrachloride dechlorination by the bacterial transition metal chelator pyridine-2,6-bis(thiocarboxylic acid) Environ. Sci. Technol. 35 552–559

    Google Scholar 

  • S Li LP Wacket (1992) ArticleTitleTrichloroethylene oxidation by toluene dioxygenase Biochem. Biophys. Res. Commun. 185 443–451

    Google Scholar 

  • SY Li LP Wackett (1993) ArticleTitleReductive dehalogenation by cytochrome P450(cam)–substrate- binding and catalysis Biochem. 32 9355–9361

    Google Scholar 

  • R Lignell H Heinonen Tanski A Uusi Rauva (1984) ArticleTitleDegradation of trichloro acetic acid in soil Acta Agriculturae Scandinavica 34 3–8

    Google Scholar 

  • M Little PA Williams (1971) ArticleTitleBacterial Halidohydrolase–purification, some properties and its modification by specific amino acid reagents Eur. J. Biochem. 21 99–109

    Google Scholar 

  • FE Loffler Q Sun JR Li JM Tiedje (2000) ArticleTitle16S rRNA gene-based detection of tetrachloroethene-dechlorinating Desulfuromonas and Dehalococcoides species Appl. Environ. Microbiol. 66 1369–1374

    Google Scholar 

  • FE Loffler JE Champine KM Ritalahti SJ Sprague JM Tiedje (1997) ArticleTitleComplete reductive dechlorination of 1,2-dichloropropane by anaerobic bacteria Appl. Environ. Microbiol. 63 2870–2875

    Google Scholar 

  • JL Long HD Stensel JF Ferguson SE Strand JE Ongerth (1993) ArticleTitleAnaerobic and aerobic treatment of chlorinated aliphatic- compounds J. Environ. Eng.-ASCE 119 300–320

    Google Scholar 

  • S Lontoh JA Zahn AA DiSpirito JD Semrau (2000) ArticleTitleIdentification of intermediates of in vivo trichloroethylene oxidation by the membrane-associated methane monooxygenase FEMS Microbiol. Lett. 186 109–113

    Google Scholar 

  • MM Lorah LD Olsen (1999) ArticleTitleNatural attenuation of chlorinated volatile organic compounds in a freshwater tidal wetland: Field evidence of anaerobic biodegradation Water Resour. Res. 35 3811–3827

    Google Scholar 

  • DR Lovley JC Woodward (1992) ArticleTitleConsumption of freons CFC-11 and CFC-12 by anaerobic sediments and soils Environ. Sci. Technol. 26 925–929

    Google Scholar 

  • A Magli FA Rainey T Leisinger (1995) ArticleTitleAcetogenesis from dichloromethane by a 2-component mixed culture comprising a novel bacterium Appl. Environ. Microbiol. 61 2943–2949

    Google Scholar 

  • A Magli M Wendt T Leisinger (1996) ArticleTitleIsolation and characterization of Dehalobacterium formicoaceticum gen nov sp nov, a strictly anaerobic bacterium utilizing dichloromethane as source of carbon and energy. Arch. Microbiol. 166 101–108

    Google Scholar 

  • A Magli M Messmer T Leisinger (1998) ArticleTitleMetabolism of dichloromethane by the strict anaerobe Dehalobacterium formicoaceticum Appl. Environ. Microbiol. 64 646–650

    Google Scholar 

  • JK Magnuson RV Stern JM Gossett SH Zinder DR Burris (1998) ArticleTitleReductive dechlorination of tetrachloroethene to ethene by two- component enzyme pathway Appl. Environ. Microbiol. 64 1270–1275

    Google Scholar 

  • KJ Malachowsky TJ Phelps AB Teboli DE Minnikin DC White (1994) ArticleTitleAerobic mineralization of trichloroethylene, vinyl-chloride, and aromatic-compounds by Rhodococcus species Appl. Environ. Microbiol. 60 542–548

    Google Scholar 

  • AE Mars J Houwing J Dolfing DB Janssen (1996) ArticleTitleDegradation of toluene and trichloroethylene by Burkholderia cepacia G4 in growth-limited fed-batch culture Appl. Environ. Microbiol. 62 886–891

    Google Scholar 

  • M Matucha ST Forczek M Gryndler H Uhlirova K Fuksova P Schroder (2003) ArticleTitleTrichloroacetic acid in Norway spruce/soil-system I Biodegradation in soil. Chemosphere 50 303–309

    Google Scholar 

  • X Maymo-Gatell YT Chine JM Gossett SH Zinder (1997) ArticleTitleIsolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene Science 276 1568–1571 Occurrence Handle10.1126/science.276.5318.1568 Occurrence Handle1:CAS:528:DyaK2sXjslGrs74%3D Occurrence Handle9171062

    Article  CAS  PubMed  Google Scholar 

  • X Maymo-Gatell T Anguish SH Zinder (1999) ArticleTitleReductive dechlorination of chlorinated ethenes and 1,2-dichloroethane by “Dehalococcoides ethenogenes” 195 Appl. Environ. Microbiol. 65 3108–3113

    Google Scholar 

  • X Maymo-Gatell I Nijenhuis SH Zinder (2001) ArticleTitleReductive dechlorination of cis-1,2-dichloroethene and vinyl chloride by “Dehalococcoides ethenogenes” Environ. Sci. Technol. 35 516–521

    Google Scholar 

  • C McAnulla IR McDonald JC Murrell (2001) ArticleTitleMethyl chloride utilising bacteria are ubiquitous in the natural environment FEMS Microbiol. Lett. 201 151–155

    Google Scholar 

  • PL McCarty (1997) ArticleTitleMicrobiology–Breathing with chlorinated solvents Science 276 1521–1522 Occurrence Handle10.1126/science.276.5318.1521 Occurrence Handle1:CAS:528:DyaK2sXjslGnsbc%3D Occurrence Handle9190688

    Article  CAS  PubMed  Google Scholar 

  • PL McCarty M Goltz G Hopkins M Dolan JP Allan BT Kawakami TJ Carrothers (1998) ArticleTitleFull-scale evaluation of in situ cometabolic degradation of trichloroethylene in groundwater through toluene injection Environ. Sci. Technol. 32 88–100

    Google Scholar 

  • ML McCormick EJ Bouwer P Adriaens (2002) ArticleTitleCarbon tetrachloride transformation in a model iron-reducing culture: Relative kinetics of biotic and abiotic reactions Environ. Sci. Technol. 36 403–410

    Google Scholar 

  • A McCulloch (2002) ArticleTitleTrichloroacetic acid in the environment Chemosphere 47 667–686

    Google Scholar 

  • IR McDonald NV Doronina YA Trotsenko C McAnulla JC Murrell (2001) ArticleTitleHyphomicrobium chloromethanicum sp nov and Methylobacterium chloromethanicum sp. nov., chloromethane-utilizing bacteria isolated from a polluted environment. Int. J. Syst. Evol. Microbiol. 51 119–122

    Google Scholar 

  • IR McDonald KL Warner C McAnulla CA Woodall RS Oremland JC Murrell (2002) ArticleTitleA review of bacterial methyl halide degradation: biochemistry, genetics and molecular ecology Environ. Microbiol. 4 193–203

    Google Scholar 

  • M Messmer S Reinhardt G Wohlfarth G Diekert (1996) ArticleTitleStudies on methyl chloride dehalogenase and O-demethylase in cell extracts of the homoacetogen strain MC based on a newly developed coupled enzyme assay Arch. Microbiol. 165 18–25

    Google Scholar 

  • M Meusel HJ Rehm (1993) ArticleTitleBiodegradation of dichloroacetic acid by freely suspended and adsorptive immobilized Xanthobacter autotrophicus GJ10 in soil Appl. Microbiol. Biotechnol. 40 165–171

    Google Scholar 

  • PJM Middeldorp MLGC Luijten BA van de Pas MHA van Eekert SWM Kengen G Schraa AJM Stams (1999) ArticleTitleAnaerobic microbial reductive dehalogenation of chlorinated ethenes Bioremediat. J. 3 151–169

    Google Scholar 

  • MD Mikesell SA Boyd (1990) ArticleTitleDechlorination of chloroform by Methanosarcina strains Appl. Environ. Microbiol. 56 1198–1201

    Google Scholar 

  • E Miller G Wohlfarth G Diekert (1998) ArticleTitlePurification and characterization of the tetrachloroethene reductive dehalogenase of strain PCE-S Arch. Microbiol. 169 497–502

    Google Scholar 

  • P Modesto P Amerlynck EJ Nyns HP Naveau (1992) ArticleTitleAcclimatization of a methanogenic consortium to polychlorinated compounds in a fixed film stationary bed reactor Water Sci. Technol. 25 265–273

    Google Scholar 

  • AP Moghaddam R Abbas JW Fisher S Stavrou JC Lipscomb (1996) ArticleTitleFormation of dichloroacetic acid by rat and mouse gut microflora, an in vitro study Biochem. Biophys. Res. Commun. 228 639–645

    Google Scholar 

  • YM Nelson WJ Jewell (1993) ArticleTitleVinyl-chloride biodegradation with methanotrophic attached films J. Environ. Eng.-ASCE 119 890–907

    Google Scholar 

  • LM Newman LP Wackett (1991) ArticleTitleFate of 2,2,2-trichloroacetaldehyde (chloral hydrate) produced during trichloroethylene oxidation by methanotrophs Appl. Environ. Microbiol. 57 2399–2402

    Google Scholar 

  • LM Newman LP Wackett (1997) ArticleTitleTrichloroethylene oxidation by purified toluene 2-monooxygenase: Products, kinetics, and turnover-dependent inactivation J. Bacteriol. 179 90–96

    Google Scholar 

  • A Neumann G Wohlfarth G Diekert (1995) ArticleTitleProperties of tetrachloroethene and trichloroethene dehalogenase of Dehalospirillum multivorans Arch. Microbiol. 163 276–281

    Google Scholar 

  • A Neumann G Wohlfarth G Diekert (1996) ArticleTitlePurification and characterization of tetrachloroethene reductive dehalogenase from Dehalospirillum multivorans J. Biol. Chem. 271 16515–16519

    Google Scholar 

  • PH Nielsen PE Holm TH Christensen (1992) ArticleTitleA field method for determination of groundwater and groundwater-sediment associated potentials for degradation of xenobiotic organic-compounds Chemosphere 25 449–462

    Google Scholar 

  • RB Nielsen JD Keasling (1999) ArticleTitleReductive dechlorination of chlorinated ethene DNAPLs by a culture enriched from contaminated groundwater Biotechnol. Bioeng. 62 160–165

    Google Scholar 

  • BC Okeke YC Chang M Hatsu T Suzuki K Takamizawa (2001) ArticleTitlePurification, cloning, and sequencing of an enzyme mediating the reductive dechlorination of tetrachloroethylene (PCE) from Clostridium bifermentans DPH-1 Can. J. Microbiol. 47 448–456

    Google Scholar 

  • R Oldenhuis JY Oedzes JJ Vanderwaarde DB Janssen (1991) ArticleTitleKinetics of chlorinated-hydrocarbon degradation by Methylosinus trichosporium OB3b and toxicity of trichloroethylene Appl. Environ. Microbiol. 57 7–14

    Google Scholar 

  • R Oldenhuis RLJM Vink D Janssen B Witholt (1989) ArticleTitleDegradation of chlorinated aliphatic hydrocarbons by Methylosinus trichosporium OB3b expressing soluble methane monooxygenase Appl. Environ. Microbiol. 55 2819–2826

    Google Scholar 

  • Y Olivas J Dolfing GB Smith (2002) ArticleTitleThe influence of redox potential on the degradation of halogenated methanes Environ. Toxicol. Chem. 21 493–499

    Google Scholar 

  • RS Oremland DJ Lonergan CW Culbertson DR Lovley (1996) ArticleTitleMicrobial degradation of hydrochlorofluorocarbons (CHCl2F and CHCl2CF3) in soils and sediments Appl. Environ. Microbiol. 62 1818–1821

    Google Scholar 

  • LT Ou JE Thomas KY Chung AV Ogram (2001) ArticleTitleDegradation of 1,3-dichloropropene by a soil bacterial consortium and Rhodococcus sp AS2C isolated from the consortium. Biodegradation 12 39–47

    Google Scholar 

  • LT Ou KY Chung JE Thomas TA Obreza DW Dickson (1995) ArticleTitleDegradation of 1,3–dichloropropene (1,3-D) in soils with different histories of field applications of 1,3-D J. Nematol. 27 249–257

    Google Scholar 

  • F Parsons PR Wood J DeMarco (1984) ArticleTitleTransformation of tetrachloroethene and trichloroethene in microcosms and groundwater J. Am. Water Works Assoc. 56 59

    Google Scholar 

  • SG Pavlostathis P Zhuang (1991) ArticleTitleTransformation of trichloroethylene by sulfate-reducing cultures enriched from a contaminated subsurface Soil Appl. Microbiol. Biotechnol. 36 416–420

    Google Scholar 

  • SG Pavlostathis P Zhuang (1993) ArticleTitleReductive dechlorination of chloroalkenes in microcosms developed with a field contaminated soil Chemosphere 27 585–595

    Google Scholar 

  • RJB Peters C Erkelens EWB Deleer L Degalan (1991) ArticleTitleThe analysis of halogenated acetic-acids in Dutch drinking-water Wat. Res. 25 473–477

    Google Scholar 

  • TJ Phelps K Malachowsky RM Schram DC White (1991) ArticleTitleAerobic mineralization of vinyl-chloride by a bacterium of the order actinomycetales Appl. Environ. Microbiol. 57 1252–1254

    Google Scholar 

  • FW Picardal RG Arnold H Couch AM Little ME Smith (1993) ArticleTitleInvolvement of cytochromes in the anaerobic biotransformation of tetrachloromethane by Shewanella putrefaciens 200 Appl. Environ. Microbiol. 59 3763–3770

    Google Scholar 

  • GJ Poelarends M Wilkens MJ Larkin JD van Elsas DB Janssen (1998) ArticleTitleDegradation of 1,3-dichloropropene by Pseudomonas cichorii 170 Appl. Environ. Microbiol. 64 2931–2936

    Google Scholar 

  • ME Rasche MR Hyman DJ Arp (1991) ArticleTitleFactors limiting aliphatic chlorocarbon degradation by Nitrosomonas europaea cometabolic inactivation of ammonia monooxygenase and substrate specificity Appl. Environ. Microbiol. 57 2986–2994

    Google Scholar 

  • ME Rasche RE Hicks MR Hyman DJ Arp (1990) ArticleTitleOxidation of monohalogenated ethanes and n chlorinated alkanes by whole cells of Nitrosomonas europaea J. Bacteriol. 172 5368–5373

    Google Scholar 

  • M Reinhard GP Curtis MM Kriegman (1990) ArticleTitleTransformations of carbon-tetrachloride and hexachloroethane induced by natural sediments and minerals under anaerobic and aerobic conditions ENVR Abstr. Pap. Am. Chem. Soc. 199 96

    Google Scholar 

  • E Rhee RE Speece (2000) ArticleTitleProbing of maximal biodegradation rates of methylene chloride, carbon tetrachloride, and 1,1,1-trichloroethane in methanogenic processes Environ. Technol. 21 147–156

    Google Scholar 

  • DJ Richards WK Shieh (1986) ArticleTitleBiological fate of organic priority pollutants in the aquatic environment Water Res. 20 1077–1090

    Google Scholar 

  • IS Ridder HJ Rozeboom J Kingma DB Janssen BW Dijkstra (1995) ArticleTitleCrystallization and preliminary X-ray analysis of l-2-haloacid dehalogenase from Xanthobacter-autotrophicus GJ10 Protein Sci. 4 2619–2620

    Google Scholar 

  • TR Roberts G Stoydin (1976) ArticleTitleThe degradation of (Z) and (E)-1,3-dichloropropenes and 1,2-dichloropropane in soil J. Pest. Sci. 7 325–335

    Google Scholar 

  • K Rugge PL Bjerg JK Pedersen H Mosbaek TH Christensen (1999) ArticleTitleAn anaerobic field injection experiment in a landfill leachate plume, Grindsted, Denmark 1. Experimental setup, tracer movement, and fate of aromatic and chlorinated compounds. Water Resour. Res. 35 1231–1246

    Google Scholar 

  • D Ryoo H Shim K Canada P Barbieri TK Wood (2000) ArticleTitleAerobic degradation of tetrachloroethylene by toluene-o-xylene monooxygenase of Pseudomonas stutzeri OX1 Nat. Biotechnol. 18 775–778

    Google Scholar 

  • S Saeki S Mukaia K Iwasaki O Yagi (1999) ArticleTitleProduction of trichloroacetic acid, trichloroethanol and dichloroacetic acid from trichloroethylene degradation by Methylocystis sp. strain M. Biocatal. Biotransform. 17 347–357

    Google Scholar 

  • JK Schaefer RS Oremland (1999) ArticleTitleOxidation of methyl halides by the facultative methylotroph strain IMB-1 Appl. Environ. Microbiol. 65 5035–5041

    Google Scholar 

  • A Schafer EJ Bouwer (2000) ArticleTitleToluene induced cometabolism of cis-1,2-dichloroethylene and vinyl chloride under conditions expected down gradient of a permeable Fe(0) barrier Water Res. 34 3391–3399

    Google Scholar 

  • C Schlotelburg C Wintzingerode Particlevon R Hauck F Wintzingerode Particlevon W Hegemann UB Gobel (2002) ArticleTitleMicrobial structure of an anaerobic bioreactor population that continuously dechlorinates 1,2-dichloropropane FEMS Microbiol. Ecol. 39 229–237

    Google Scholar 

  • B Schneider R Muller R Frank F Lingens (1993) ArticleTitleSite-directed mutagenesis of the 2-haloalkanoic acid dehalogenase-i gene from Pseudomonas sp. strain cbs3 and its effect on catalytic activity. Biol. Chem. Hoppe-Seyler 374 489–496

    Google Scholar 

  • HF Schroder (1987) ArticleTitleChlorinated hydrocarbons in biological sewage purification–fate and difficulties in balancing Water Sci. Technol. 19 429–438

    Google Scholar 

  • W Schumacher C Holliger (1996) ArticleTitleThe proton electron ratio of the menaquinone-dependent electron transport from dihydrogen to tetrachloroethene in ‘Dehalobacter restrictus’ J. Bacteriol. 178 2328–2333

    Google Scholar 

  • W Schumacher C Holliger AJB Zehnder WR Hagen (1997) ArticleTitleRedox chemistry of cobalamin and iron-sulfur cofactors in the tetrachloroethene reductase of Dehalobacter restrictus FEBS Lett. 409 421–425

    Google Scholar 

  • L Semprini (1997) ArticleTitleStrategies for the aerobic co-metabolism of chlorinated solvents Curr. Opin. Biotechnol. 8 296–308

    Google Scholar 

  • Semprini L, Hopkins GD, Roberts PV & McCarty PL (1990) In-situ biotransformation of carbon tetrachloride, 1,1,1-trichloroethane, Freon-11, and Freon-113 under anoxic conditions. In: Anonymous (Ed) AGU 1990 Fall Meeting. (pp 1324). American Geophysical Union, Washington, DC, United States

  • L Semprini GD Hopkins PL McCarty PV Roberts (1992) ArticleTitleIn situ transformation of carbon-tetrachloride and other halogenated compounds resulting from biostimulation under anoxic conditions Environ. Sci. Technol. 26 2454–2461

    Google Scholar 

  • MM Shurtliff GF Parkin LJ Weathers DT Gibson (1996) ArticleTitleBiotransformation of trichloroethylene by a phenol-induced mixed culture J. Environ. Eng.-ASCE 122 581–589

    Google Scholar 

  • JH Slater AT Bull DJ Hardman (1997) ArticleTitleMicrobial dehalogenation of halogenated alkanoic acids, alcohols and alkanes Adv. Microb. Physiol. 38 133–176

    Google Scholar 

  • FJ Small JK Tilley SA Ensign (1995) ArticleTitleCharacterization of a new pathway for epichlorohydrin degradation by whole cells of Xanthobacter strain PY2 Appl. Environ. Microbiol. 61 1507–1513

    Google Scholar 

  • H Smidt ADL Akkermans J Oost Particlevan der WM Vos Particlede (2000) ArticleTitleHalorespiring bacteria-molecular characterization and detection Enzyme Microb. Technol. 27 812–820

    Google Scholar 

  • O Snoeyenbos-West CG Praagh Particlevan DR Lovley (2001) ArticleTitleTrichlorobacter thiogenes should be renamed as a Geobacter species Appl. Environ. Microbiol. 67 1020–1021

    Google Scholar 

  • DN Sonier NL Duran GB Smith (1994) ArticleTitleDechlorination of trichlorofluoromethane (CFC-11) by sulfate-reducing bacteria from an aquifer contaminated with halogenated aliphatic-compounds Appl. Environ. Microbiol. 60 4567–4572

    Google Scholar 

  • DT Sponza (2002) ArticleTitleSimultaneous granulation, biomass retainment and carbon tetrachloride (CT) removal in an upflow anaerobic sludge blanket (UASB) reactor Process Biochem. 37 1091–1101

    Google Scholar 

  • DI Stirling H Dalton (1979) ArticleTitleThe fortuitous oxidation and cometabolism of various carbon compounds by whole-cell suspensions of Methylococcus capsulatus (Bath) FEMS Microbiol. Lett. 5 315–318

    Google Scholar 

  • SE Strand MD Bjelland HD Stensel (1990) ArticleTitleKinetics of chlorinated hydrocarbon degradation by suspended cultures of methane-oxidizing bacteria Res. J. Water Poll. Control Fed. 62 124–129

    Google Scholar 

  • G Stucki T Leisinger (1983) ArticleTitleBacterial-degradation of 2-chloroethanol proceeds via 2-chloroacetic acid FEMS Microbiol. Lett. 16 123–126

    Google Scholar 

  • G Stucki M Thuer (1994) ArticleTitleIncreased removal capacity for 1,2-dichloroethane by biological modification of the granular activated carbon process Appl. Microbiol. Biotechnol. 42 167–172

    Google Scholar 

  • G Stucki M Thuer (1995) ArticleTitleExperiences of a large scale application of 1,2-dichloroethane degrading microorganisms for groundwater treatment Env. Sci. Technol. 29 2339–2345

    Google Scholar 

  • G Stucki U Krebser T Leisinger (1983) ArticleTitleBacterial growth on 1,2-dichloroethane Experientia Basel 39 1271–1273

    Google Scholar 

  • G Stucki M Thuer R Bentz (1992) ArticleTitleBiological degradation of 1,2-dichloroethane under groundwater conditions Water Res. 26 273–278

    Google Scholar 

  • BL Sun BM Griffin HL Ayala-del-Rio SA Hashsham JM Tiedje (2002) ArticleTitleMicrobial dehalorespiration with 1,1,1-trichloroethane Science 298 1023–1025

    Google Scholar 

  • A Suyama M Yamashita S Yoshino K Furukawa (2002) ArticleTitleMolecular characterization of the PceA reductive dehalogenase of Desulfitobacterium sp. strain Y51. J. Bacteriol. 184 3419–3425

    Google Scholar 

  • A Suyama R Iwakiri K Kai T Tokunaga N Sera K Furukawa (2001) ArticleTitleIsolation and characterization of Desulfitobacterium sp. strain Y51 capable of efficient dehalogenation of tetrachloroethene and polychloroethanes. Biosci. Biotechnol. Biochem. 65 1474–1481

    Google Scholar 

  • NG Swoboda-Colberg (1995) Chemical contamination of the environment: Sources, types and fate of synthetic organic chemicals LY Young C Cerniglia (Eds) Microbial Transformation and Degradation of Toxic Organic Chemicals (pp 27–74) John Wiley & Sons New York

    Google Scholar 

  • K Tanaka (1997) ArticleTitleAbiotic degradation of tetrachloromethane in anaerobic culture media J. Ferment. Bioeng. 83 118–120

    Google Scholar 

  • V Tandol TD Distefano PA Bowser JM Gossett SH Zinder (1994) ArticleTitleReductive dehalogenation of chlorinated ethenes and halogenated ethanes by a high-rate anaerobic enrichment culture Environ. Sci. Technol. 28 973–979

    Google Scholar 

  • DP Terzenbach M Blaut (1994) ArticleTitleTransformation of tetrachloroethylene to trichloroethylene by homoacetogenic bacteria FEMS Microbiol. Lett. 123 213–218

    Google Scholar 

  • AJ Tesoriero FE Loffler H Liebscher (2001) ArticleTitleFate and origin of 1,2-dichloropropane in an unconfined shallow aquifer Environ. Sci. Technol. 35 455–461

    Google Scholar 

  • JM Tiedje (1993) Bioremediation from an ecological perspective. In: In Situ Bioremediation: When Does it Work? National Academy Press Washington, DC 110–120

    Google Scholar 

  • J Traunecker A Preuss G Diekert (1991) ArticleTitleIsolation and characterization of a methyl-chloride utilizing, strictly anaerobic bacterium Arch. Microbiol. 156 416–421

    Google Scholar 

  • HC Tsien GA Brusseau RS Hanson LP Wackett (1989) ArticleTitleBiodegradation of trichloroethylene by Methylosinus trichosporium OB3b Appl. Environ. Microbiol. 55 3155–3161

    Google Scholar 

  • MH Agteren Particlevan S Keuning DB Janssen (1998) Handbook of Biodegradation and Biological Treatment of Hazardous Organic Compounds. Kluwer Academic Publishers Dordrecht, The Netherlands

    Google Scholar 

  • BA Pas Particlevan de J Gerritse WM Vos Particlede G Schraa AJM Stams (2001) ArticleTitleTwo distinct enzyme systems are responsible for tetrachloroethene and chlorophenol reductive dehalogenation in Desulfitobacterium strain PCE1 Arch. Microbiol. 176 165–169

    Google Scholar 

  • AJ Wijngaard Particlevan den DB Janssen B Witholt (1989) ArticleTitleDegradation of epichlorohydrin and halohydrins by bacterial cultures isolated from freshwater sediment J. Gen. Microbiol. 135 2199–2208

    Google Scholar 

  • AJ Wijngaard Particlevan den KWHJ Kamp Particlevan der J Ploeg Particlevan der F Pries B Kazemier DB Janssen (1992) ArticleTitleDegradation of 1,2-dichloroethane by Ancylobacter aquaticus and other facultative methylotrophs Appl. Environ. Microbiol. 58 976–983

    Google Scholar 

  • H Dijk Particlevan (1980) ArticleTitleDissipation rates in soil of 1,2-dichloropropane and 1,3- and 2,3-dichloropropenes J. Pest. Sci. 11 625–632

    Google Scholar 

  • MHA Eekert Particlevan AJM Stams JA Field G Schraa (1999) ArticleTitleGratuitous dechlorination of chloroethanes by methanogenic granular sludge Appl. Microbiol. Biotechnol. 51 46–52

    Google Scholar 

  • MHA Eekert Particlevan TJ Schroder AJM Stams G Schraa JA Field (1998) ArticleTitleDegradation and fate of carbon tetrachloride in unadapted methanogenic granular sludge Appl. Environ. Microbiol. 64 2350–2356

    Google Scholar 

  • MHA Eekert Particlevan TJ Schroder A Rhee Particlevan AJM Stams G Schraa JA Field (2001) ArticleTitleConstitutive dechlorination of chlorinated ethenes by a methanol degrading methanogenic consortium Bioresour. Technol. 77 163–170

    Google Scholar 

  • JET Hylckama Vlieg Particlevan W Koning Particlede DB Janssen (1996) ArticleTitleTransformation kinetics of chlorinated ethenes by Methylosinus trichosporium OB3b and detection of unstable epoxides by on-line gas chromatography Appl. Environ. Microbiol. 62 3304–3312

    Google Scholar 

  • KH Pee Particlevan S Unversucht (2003) ArticleTitleBiological dehalogenation and halogenation reactions Chemosphere 52 299–312

    Google Scholar 

  • S Vancheeswaran MR Hyman L Semprini (1999) ArticleTitleAnaerobic biotransformation of trichlorofluoroethene in groundwater microcosms Environ. Sci. Technol. 33 2040–2045

    Google Scholar 

  • PA Vandenbergh BS Kunka (1988) ArticleTitleMetabolism of volatile chlorinated aliphatic-hydrocarbons by Pseudomonas fluorescens Appl. Environ. Microbiol. 54 2578–2579

    Google Scholar 

  • T Vannelli M Logan DM Arciero AB Hopper (1990) ArticleTitleDegradation of halogenated aliphatic compounds by the ammonia-oxidizing bacterium Nitrosomonas europaea Appl. Environ. Microbiol. 56 1169–1171

    Google Scholar 

  • JN Veenstra DA Sanders J Johan (1999) ArticleTitleRemoval of air-phase 1,2-dichloroethane in a biofilter: A comparison of cometabolism using pre-loaded phenol and concurrent phenol addition J. Environ. Sci. Health Part A-Toxic/Hazard. Subst. Environ. Eng. 34 1569–1589

    Google Scholar 

  • MF Verce DL Freedman (2000) ArticleTitleModeling the kinetics of vinyl chloride cometabolism by an ethane-grown Pseudomonas sp Biotechnol. Bioeng. 71 274–285

    Google Scholar 

  • MF Verce RL Ulrich DL Freedman (2000) ArticleTitleCharacterization of an isolate that uses vinyl chloride as a growth substrate under aerobic conditions Appl. Environ. Microbiol. 66 3535–3542

    Google Scholar 

  • MF Verce RL Ulrich DL Freedman (2001) ArticleTitleTransition from cometabolic to growth-linked biodegradation of vinyl chloride by a Pseudomonas sp. isolated on ethene. Environ. Sci. Technol. 35 4242–4251

    Google Scholar 

  • C Verhagen E Smit DB Janssen JD VanElsas (1995) ArticleTitleBacterial dichloropropene degradation in soil; Screening of soils and involvement of plasmids carrying the DhlA gene Soil Biol. Biochem. 27 1547–1557

    Google Scholar 

  • JPM Vink KP Groen (1992) ArticleTitleMathematical descriptions of accelerated transformation of 1,3-dichloropropene in soil - A microbiological assessment Sci. Total Environ. 123 591–603

    Google Scholar 

  • T Vogel PL McCarty (1985) ArticleTitleBiotransformation of tetrachloroethylene to trichloroethylene, dichloroethylene, vinyl chloride and carbon dioxide under methanogenic conditions Appl. Environ. Microbiol. 49 1080–1083

    Google Scholar 

  • T Vogel CS Criddle PL McCarty (1987) ArticleTitleTransformation of halogenated aliphatic compounds Environ. Sci. Technol. 21 722–736

    Google Scholar 

  • TM Vogel PL McCarty (1987) ArticleTitleAbiotic and biotic transformations of 1,1,1-trichloroethane under methanogenic conditions Environ. Sci. Technol. 21 1208–1213

    Google Scholar 

  • Wintzingerode F von C Schlotelburg R Hauck W Hegemann UB Gobel (2001) ArticleTitleDevelopment of primers for amplifying genes encoding CprA- and PceA-like reductive dehalogenases in anaerobic microbial consortia, dechlorinating trichlorobenzene and 1,2-dichloropropane FEMS Microbiol. Ecol. 35 189–196

    Google Scholar 

  • LP Wacket DT Gibson (1988) ArticleTitleDegradation of trichlotoethylene by toluene dioxygenase in whole cells studies with Pseudomonas putida F1 Appl. Environ. Microbiol. 54 1703–1708

    Google Scholar 

  • LP Wackett (1995) Bacterial co-metabolism of halogenated organic compounds LY Young C Cerniglia (Eds) Microbial Transformation and Degradation of Toxic Organic Chemicals John Wiley & Sons New York 217–241

    Google Scholar 

  • LP Wackett GA Brusseau SR Householder RS Hanson (1989) ArticleTitleSurvey of microbial oxygenases trichloroethylene degradation by propane-oxidizing bacteria Appl. Environ. Microbiol. 55 2960–2964

    Google Scholar 

  • LP Wackett MJ Sadowsky LM Newman HG Hur SY Li (1994) ArticleTitleMetabolism of polyhalogenated compounds by a genetically-engineered bacterium Nature 368 627–629

    Google Scholar 

  • AL Weightman AJ Weightman JH Slater (1992) ArticleTitleMicrobial dehalogenation of trichloroacetic acid World J. Microbiol. Biotechnol. 8 512–518

    Google Scholar 

  • InstitutionalAuthorNameWHO (1984) Environmental Health Criteria 33: Epichlorohydrin World Health Organization Geneva, Switzerland

    Google Scholar 

  • InstitutionalAuthorNameWHO (1990) Vinylidene Chloride. Environmental Health Criteria 100 World Health Organization Geneva, Switzerland

    Google Scholar 

  • DW Wilcox RL Autenrieth JS Bonner (1995) ArticleTitlePropane-induced biodegradation of vapor-phase trichloroethylene Biotechnol. Bioeng. 46 333–342

    Google Scholar 

  • AP Wild W Winkelbauer T Leisinger (1995) ArticleTitleAnaerobic dechlorination of trichloroethene, tetrachloroethene and 1,2-dichloroethane by an acetogenic mixed culture in a fixed bed reactor Biodegrad. 6 309–318

    Google Scholar 

  • N Winterton (2000) ArticleTitleChlorine: the only green element - towards a wider acceptance of its role in natural cycles Green Chem. 2 173–225

    Google Scholar 

  • ME Witt GM Klecka EJ Lutz TA Ei NR Grosso FH Chapelle (2002) ArticleTitleNatural attenuation of chlorinated solvents at Area 6, Dover Air Force Base: groundwater biogeochemistry J. Contam. Hydrol. 57 61–80

    Google Scholar 

  • O Yagi A Hashimoto K Iwasaki M Nakajima (1999) ArticleTitleAerobic degradation of 1,1,1-trichloroethane by Mycobacterium spp. isolated from soil. Appl. Environ. Microbiol. 65 4693–4696

    Google Scholar 

  • P Yu T Welander (1995) ArticleTitleGrowth of an aerobic bacterium with trichloroacetic-acid as the sole source of energy and carbon Appl. Microbiol. Biotechnol. 42 769–774

    Google Scholar 

  • ZT Yu GB Smith (1997) ArticleTitleChloroform dechlorination by a wastewater methanogenic consortium and cell extracts of Methanosarcina barkeri Water Res. 31 1879–1886

    Google Scholar 

  • SW Zou HD Stensel JF Ferguson (2000) ArticleTitleCarbon tetrachloride degradation: Effect of microbial growth substrate and vitamin B-12 content Environ. Sci. Technol. 34 1751–1757

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.A Field.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Field, J., Sierra-Alvarez, R. Biodegradability of chlorinated solvents and related chlorinated aliphatic compounds. Rev Environ Sci Biotechnol 3, 185–254 (2004). https://doi.org/10.1007/s11157-004-4733-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11157-004-4733-8

Keywords

Navigation