Skip to main content
Log in

The viable but nonculturable phenotype: a crossroads in the life-cycle of non-differentiating bacteria?

  • Review paper
  • Published:
Reviews in Environmental Science and Bio/Technology Aims and scope Submit manuscript

Abstract

In nature, prokaryotes must face alternating periods of prosperity and adversity. Differentiating bacteria confront situations of adversity by developing resistant structures. When there is a plentiful period, they adopt a vegetative state and when the period is adverse, a resistant structure, thereby completing a cycle. Non-differentiating bacteria do not develop such morphological distinct resistant structures. It has been proposed that many of these bacteria withstand periods of adversity by adopting the viable but nonculturable phenotype (VBNC). Bacteria of this phenotype conserve detectable metabolic function but become unculturable. Is it possible that the VBNC phenotype can revert to a culturable state, and vice versa, thus establishing a life-cycle? This review presents and evaluates different hypotheses regarding this question. Moreover, it attempts to analyse and proffer answers to other questions related to this phenotype. Is this a successful phenotype which prolongs survival? Is this a strategy for the survival of individual cells, or is it a strategy for the survival of a population? Finally, is it possible that this phenotype is, in fact, an example of altruistic death?

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aertsen A, Michiels CW (2004) Stress and how bacteria cope with death and survival. Crit Rev Microbiol 30:263–273. doi:10.1080/10408410490884757

    Article  CAS  Google Scholar 

  • Amel KN, Amine B, Amina B (2008) Survival of Vibrio fluvialis in seawater under starvation conditions. Microbiol Res 163:323–328. doi:10.1016/j.micres.2006.06.006

    Article  CAS  Google Scholar 

  • Arana I, Barcina I (2008) Ecological significance and possible risks of nonculturable intestinal bacteria in water systems. In: Van Dijk T (ed) Microbial ecology research trends. Nova Science Publishers, New York, pp 115–137

    Google Scholar 

  • Arana I, Justo JI, Muela A, Barcina I (2001) Survival and plasmid transfer ability of Escherichia coli in wastewater. Water Air Soil Pollut 126:223–238. doi:10.1023/A:1005290830222

    Article  CAS  Google Scholar 

  • Arana I, Seco C, Epelde K, Muela A, Fernández-Astorga A, Barcina I (2004) Relationships between Escherichia coli cells and the surrounding medium during survival processes. Antonie Van Leeuwenhoek 86:189–199

    Article  CAS  Google Scholar 

  • Arana I, Orruño M, Pérez-Pascual D, Seco C, Muela A, Barcina I (2007) Inability of Escherichia coli to resuscitate from the viable but nonculturable state. FEMS Microbiol Ecol 62:1–11. doi:10.1111/j.1574-6941.2007.00362.x

    Article  CAS  Google Scholar 

  • Arana I, Orruño M, Seco C, Muela A, Barcina I (2008) Is Urografin density gradient centrifugation suitable to separate nonculturable cells from Escherichia coli populations? Antonie Van Leeuwenhoek 93:249–257

    Article  Google Scholar 

  • Asakura H, Panutdaporn N, Kawamoto K, Igimi S, Yamamoto S, Makino S (2007) Proteomic characterization of enterohemorrhagic Escherichia coli O157:H7 in the oxidation-induced viable but non-culturable state. Microbiol Immunol 51:875–881

    CAS  Google Scholar 

  • Asakura H, Kawamoto K, Haishima Y, Igimi S, Yamamoto S, Makino S (2008) Differential expression of the outer membrane protein W (OmpW) stress response in enterohemorrhagic Escherichia coli O157:H7 corresponds to the viable but non-culturable state. Res Microbiol 159:709–717. doi:10.1016/j.resmic.2008.08.005

    Article  CAS  Google Scholar 

  • Baffone W, Casaroli A, Citterio B, Pierfelici L, Campana R, Vittoria E, Guaglianone E, Donelli G (2006) Campylobacter jejuni loss of culturability in aqueous microcosms and ability to resuscitate in a mouse model. Int J Food Microbiol 107:83–91. doi:10.1016/j.ijfoodmicro.2005.08.015

    Article  Google Scholar 

  • Barcina I, Lebaron P, Vives-Rego J (1997) Survival of allochthonous bacteria in aquatic systems: a biological approach. FEMS Microbiol Ecol 23:1–9. doi:10.1111/j.1574-6941.1997.tb00385.x

    Article  CAS  Google Scholar 

  • Barer MR, Harwood CR (1999) Bacterial viability and culturability. Adv Microb Physiol 41:93–137. doi:10.1016/S0065-2911(08)60166-6

    Article  CAS  Google Scholar 

  • Barer MR, Smith RJ, Cooney RP, Kimmitt PT (2000) Relationships between culturability, activity and virulence in pathogenic bacteria. J Infect Chemother 6:108–111. doi:10.1007/PL00012148

    Article  CAS  Google Scholar 

  • Basaglia M, Povolo S, Casella S (2007) Resuscitation of viable but not culturable Sinorhizobium meliloti 41 pRP4-luc: effects of oxygen and host plant. Curr Microbiol 54:167–174. doi:10.1007/s00284-005-0482-3

    Article  CAS  Google Scholar 

  • Blankenhorn DB, Phillips J, Slonczewski JL (1999) Acid- and base-induced proteins during aerobic and anaerobic growth of Escherichia coli revealed by two-dimensional gel electrophoresis. J Bacteriol 181:2209–2216

    CAS  Google Scholar 

  • Bogosian G, Bourneuf EV (2001) A matter of bacterial life and death. EMBO Rep 2:770–774. doi:10.1093/embo-reports/kve182

    Article  CAS  Google Scholar 

  • Bogosian G, Aardema ND, Bourneuf E, Morris PJL, O’Neil JP (2000) Recovery of hydrogen peroxide-sensitive culturable cells of Vibrio vulnificus gives the appearance of resuscitation from a viable but nonculturable state. J Bacteriol 182:5050–5075. doi:10.1128/JB.182.18.5070-5075.2000

    Article  Google Scholar 

  • Colwell RR (2000) Bacterial death revisited. In: Cowell RR, Grimes DJ (eds) Nonculturable microorganisms in the environment. ASM Press, Washington, DC, pp 325–342

    Google Scholar 

  • Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM (1995) Microbial biofilms. Annu Rev Microbiol 49:711–745. doi:10.1146/annurev.mi.49.100195.003431

    Article  CAS  Google Scholar 

  • Coutard F, Pommepuy M, Loaech S, Hervio-Heath D (2005) mRNA detection by reverse transcription–PCR for monitoring viability and potential virulence in a pathogenic strain of Vibrio parahaemolyticus in viable but nonculturable state. J Appl Microbiol 98:951–961. doi:10.1111/j.1365-2672.2005.02534.x

    Article  CAS  Google Scholar 

  • Coutard F, Loaech S, Pommepuy M, Hervio-Heath D (2007) Real-time reverse transcription-PCR for transcriptional expression analysis of virulence and housekeeping genes in viable but nonculturable Vibrio parahaemolyticus after recovery of culturability. Appl Environ Microbiol 73:5183–5189. doi:10.1128/AEM.02776-06

    Article  CAS  Google Scholar 

  • Cuny C, Dukan L, Fraysse L, Ballesteros M, Dukan S (2005) Investigation of the first events leading to loss of culturability during Escherichia coli starvation: future nonculturable bacteria form a subpopulation. J Bacteriol 187:2244–2248. doi:10.1128/JB.187.7.2244-2248.2005

    Article  CAS  Google Scholar 

  • Day AP, Oliver JD (2004) Changes in membrane fatty acid composition during entry of Vibrio vulnificus into the viable but nonculturable state. J Microbiol 42:69–73

    CAS  Google Scholar 

  • Desnues B, Cuny C, Grégori G, Dukan S, Aguilaniu H, Nyström T (2003) Differential oxidative damage and expression of stress defence regulons in culturable and non culturable Escherichia coli cells. EMBO Rep 4:400–404. doi:10.1038/sj.embor.embor799

    Article  CAS  Google Scholar 

  • Dhiaf A, Bakhrouf A (2004) Recovery in embryonated chicken eggs of viable but non-culturable Salmonella. Food Agricult Environ 2:104–107

    Google Scholar 

  • Dukan S, Levi Y, Touati D (1997) Recovery of culturability of an HOCl-stressed population of E. coli after incubation in phosphate buffer: resuscitation or regrowth? Appl Environ Microbiol 63:4204–4209

    CAS  Google Scholar 

  • Eichenberger P (2007) Genomics and cellular biology of endospore formation. In: Graumann P (ed) Bacillus: cellular and molecular biology. Caister Acad Press, Hethersett

    Google Scholar 

  • Etchegaray JP, Inouye M (1999) CspA, CspB, and CspG, major cold shock proteins of Escherichia coli, are induced at low temperature under conditions that completely block protein synthesis. J Bacteriol 181:1827–1830

    CAS  Google Scholar 

  • Ferenci T (2001) Hungry bacteria–definition and properties of a nutritional state. Environ Microbiol 3:605–611. doi:10.1046/j.1462-2920.2001.00238.x

    Article  CAS  Google Scholar 

  • Fischer-Le Saux M, Hervio-Heath D, Loaec S, Colwell RR, Pommepuy M (2002) Detection of cytotoxin-hemolysin mRNA in nonculturable populations of environmental and clinical Vibrio vulnificus strains in artificial seawater. Appl Environ Microbiol 68:5641–5646

    Article  CAS  Google Scholar 

  • Flint KP (1987) The long-term survival of Escherichia coli in river water. J Appl Bacteriol 63:261–270

    CAS  Google Scholar 

  • Grossart HP, Kiørboe T, Tang K, Ploug H (2003) Bacterial colonization of particles: growth and interactions. Appl Environ Microbiol 69:3500–3509. doi:10.1128/AEM.69.6.3500-3509.2003

    Article  CAS  Google Scholar 

  • Guerrero R, Berlanga M (2001) La “inmortalidad” procariótica y la tenacidad de la vida. Actualidad SEM 32:16–23

    Google Scholar 

  • Gunasekera TS, Sørensen A, Attfield PV, Sørensen SJ, Veal DA (2002) Inducible gene expression by nonculturable bacteria in milk after pasteurization. Appl Environ Microbiol 68:1988–1993. doi:10.1128/AEM.68.4.1988-1993.2002

    Article  CAS  Google Scholar 

  • Gupte AR, de Rezende LE, Joseph SW (2003) Induction and resuscitation of viable but nonculturable Salmonella enterica serovar typhimurium DT104. Appl Environ Microbiol 69:6669–6675. doi:10.1128/AEM.69.11.6669-6675.2003

    Article  CAS  Google Scholar 

  • Heim S, Lleo MM, Bonato B, Guzman CA, Canepari P (2002) The viable but nonculturable state and starvation are different stress responses of Enterococcus faecalis, as determined by proteome analysis. J Bacteriol 184:6739–6745. doi:10.1128/JB.184.23.6739-6745.2002

    Article  CAS  Google Scholar 

  • Hengge-Aronis R (1993) Survival of hunger and stress: the role of rpoS in early stationary phase gene regulation in Escherichia coli. Cell 72:165–168. doi:10.1016/0092-8674(93)90655-A

    Article  CAS  Google Scholar 

  • Hengge-Aronis R (2002) Recent insights into the general stress response regulatory network in Escherichia coli. J Mol Microbiol Biotechnol 4:341–346

    CAS  Google Scholar 

  • Huq A, Rivera ING, Colwell RR (2000) Epidemiological significance of viable but nonculturable microorganisms. In: Cowell RR, Grimes DJ (eds) Nonculturable microorganisms in the environment. ASM Press, Washington, DC, pp 301–323

    Google Scholar 

  • Huq A, Whitehouse CA, Grim CJ, Alam M, Colwell RR (2008) Biofilms in water, its role and impact in human disease transmission. Curr Opin Biotechnol 19:244–247. doi:10.1016/j.copbio.2008.04.005

    Article  CAS  Google Scholar 

  • Jiang X, Chai TJ (1996) Survival of Vibrio parahaemolyticus at low temperatures under starvation conditions and subsequent resuscitation of viable, nonculturable cells. Appl Environ Microbiol 62:1300–1305

    CAS  Google Scholar 

  • Joux F, Lebaron P (2000) Use of fluorescent probes to assess physiological functions of bacteria at single-cell level. Microbes Infect 2:1523–1535. doi:10.1016/S1286-4579(00)01307-1

    Article  CAS  Google Scholar 

  • Kaprelyants AS, Mukamolova GV, Kell DB (1994) Estimation of dormant Micrococcus luteus cells by penicillin lysis and by resuscitation in cell-free spent culture medium at high dilution. FEMS Microbiol Lett 115:347–352. doi:10.1111/j.1574-6968.1994.tb06662.x

    Article  Google Scholar 

  • Karunasagar I, Karunasagar I (2005) Retention of pathogenicity in viable nonculturable pathogens. In: Belkin S, Colwell RR (eds) Oceans and health: pathogens in the marine environment. Springer, New York, pp 361–371

    Chapter  Google Scholar 

  • Keep NH, Ward JM, Robertson G, Cohen-Gonsaud M, Henderson B (2006) Bacterial resuscitation factors: revival of viable but non-culturable bacteria. Cell Mol Life Sci 63:2555–2559. doi:10.1007/s00018-006-6188-2

    Article  CAS  Google Scholar 

  • Kell DB, Kaprelyants AS, Weichart DH, Harwood CR, Barer MR (1998) Viability and activity in readily culturable bacteria: a review and discussion of the practical issues. Antonie Van Leeuwenhoek 73:169–187

    Article  CAS  Google Scholar 

  • Klauck E, Typas A, Hengge R (2007) The sigmaS subunit of RNA polymerase as a signal integrator and network master regulator in the general stress response in Escherichia coli. Sci Prog 90:103–127

    CAS  Google Scholar 

  • Kolling GL, Matthews KR (2001) Examination of recovery in vitro and in vivo of nonculturable Escherichia coli O157:H7. Appl Environ Microbiol 67:3928–3933. doi:10.1128/AEM.67.9.3928-3933.2001

    Article  CAS  Google Scholar 

  • Kong IS, Bates TC, Hülsmann A, Hassan H, Smith BE, Oliver JD (2004) Role of catalase and oxyR in the viable but nonculturable state of Vibrio vulnificus. FEMS Microbiol Ecol 50:133–142. doi:10.1016/j.femsec.2004.06.004

    Article  CAS  Google Scholar 

  • Kurokawa M, Nukina M, Nakanishi H, Tomita S, Tamura T, Shimoyama T (1999) Resuscitation from the viable but nonculturable state of Helicobacter pylori. Kansenshogaku Zasshi 73:15–19

    CAS  Google Scholar 

  • Kussell E, Kishony R, Balaban NQ, Leibler S (2005) Bacterial persistence: a model of survival in changing environments. Genetics 169:1807–1814. doi:10.1534/genetics.104.035352

    Article  Google Scholar 

  • Lleó MM, Pierobon S, Tafi MC, Signoreto C, Canepari P (2000) mRNA detection by reverse transcription-PCR for monitoring viability over time in Enterococcus faecalis viable but nonculturable population maintained in laboratory microcosms. Appl Environ Microbiol 66:4564–4567. doi:10.1128/AEM.66.10.4564-4567.2000

    Article  Google Scholar 

  • Lleó MM, Bonato B, Tafi MC, Signoretto M, Boaretti M, Canepari P (2001) Resuscitation rate in different enterococcal species in the viable but nonculturable state. J Appl Microbiol 91:1095–1102. doi:10.1046/j.1365-2672.2001.01476.x

    Article  Google Scholar 

  • Lleó MM, Bonato B, Signoretto C, Canepari P (2003) Vancomycin resistance is maintained in Enterococci in the viable but nonculturable state and after division is resumed. Antimicrob Agents Chemother 47:1154–1156. doi:10.1128/AAC.47.3.1154-1156.2003

    Article  CAS  Google Scholar 

  • Maalej S, Gdoura R, Dukan S, Hammami A, Bouain A (2004) Maintenance of pathogenicity during entry into and resuscitation from viable but nonculturable state in Aeromonas hydrophila exposed to natural seawater at low temperature. J Appl Microbiol 97:557–565. doi:10.1111/j.1365-2672.2004.02336.x

    Article  CAS  Google Scholar 

  • Magariños B, Romalde JL, Toranzo AE (1997) Viability of starved Pasteurella piscicida in seawater monitored by flow cytometry and the effect of antibiotics on its resuscitation. Lett Appl Microbiol 24:122–126. doi:10.1046/j.1472-765X.1997.00366.x

    Article  Google Scholar 

  • Mizunoe Y, Wai SN, Ishikawa T, Takade A, Yoshida S (2000) Resuscitation of viable but nonculturable cells of Vibrio parahaemolyticus induced at low temperature under starvation. FEMS Microbiol Lett 186:115–120. doi:10.1111/j.1574-6968.2000.tb09091.x

    Article  CAS  Google Scholar 

  • Morita RY (1980) Low temperature, energy, survival and time in microbial ecology. In: Schlesdsinger D (ed) Microbiology-1980. ASM, Washington, DC, pp 187–214

    Google Scholar 

  • Muela A, Arana I, Justo JI, Seco C, Barcina I (1999) Changes in DNA content and cellular death along a starvation-survival process of Escherichia coli in river water. Microb Ecol 37:62–69. doi:10.1007/s002489900130

    Article  CAS  Google Scholar 

  • Muela A, Seco C, Camafeita E, Arana I, Ortuño M, López JA, Barcina I (2008) Changes in Escherichia coli outer membrane subproteome under environmental conditions inducing the viable but nonculturable state. FEMS Microbiol Ecol 64:28–36. doi:10.1111/j.1574-6941.2008.00453.x

    Article  CAS  Google Scholar 

  • Mukamolova GV, Yanopolskaya ND, Kell DB, Kaprelyants AS (1998) On resuscitation from the dormant state of Micrococcus luteus. Antonie Van Leeuwenhoek 73:237–243

    Article  CAS  Google Scholar 

  • Mukamolova GV, Kormer SS, Kell DB, Kaprelyants AS (1999) Stimulation of the multiplication of Micrococcus luteus by an autocrine growth factor. Arch Microbiol 172:9–14. doi:10.1007/s002030050733

    Article  CAS  Google Scholar 

  • Mukamolova GV, Kaprelyants AS, Kell DB, Young M (2003) Adoption of the transietly non-culturable sate—a bacterial survival strategy? Adv Microb Physiol 47:65–129. doi:10.1016/S0065-2911(03)47002-1

    Article  CAS  Google Scholar 

  • Nilsson L, Oliver JD, Kjelleberg S (1991) Resuscitation of Vibrio vulnificus from the viable but nonculturable state. J Bacteriol 173:5054–5059

    CAS  Google Scholar 

  • Nyström T (2001) Not quite dead enough: on bacterial life, culturability, senescence, and death. Arch Microbiol 176:159–164. doi:10.1007/s002030100314

    Article  Google Scholar 

  • Nyström T (2003) Nonculturable bacteria: programmed survival forms or cells at death’s door? Bioessays 25:204–211. doi:10.1002/bies.10233

    Article  CAS  Google Scholar 

  • Ohtomo R, Saito M (2001) Increase in the culturable cell number of Escherichia coli during recovery from saline stress: possible implication for resuscitation from the VBNC state. Microb Ecol 42:208–214

    CAS  Google Scholar 

  • Oliver JD (2005) The viable but nonculturable state in bacteria. J Microbiol 43:93–100

    Google Scholar 

  • Orruño M (2009) El estado viable no cultivable. Proceso degenerativo o estrategia de supervivencia de las bacterias no diferfenciadas. Análisis proteómico del proceso. Dissertation, University of Basque Country

  • Ritchie JM, Campbell GR, Shepherd J, Beaton Y, Jones D, Killham K, Artz RRE (2003) A stable bioluminescent construct of Escherichia coli O157:H7 for hazard assessments of long-term survival in the environment. Appl Environ Microbiol 69:3359–3367. doi:10.1128/AEM.69.6.3359-3367.2003

    Article  CAS  Google Scholar 

  • Schaechter M, Ingraham JL, Neidhart FC (2006) Microbe. ASM Press, Washington, DC

    Google Scholar 

  • September S, Els F, Venter S, Brozel V (2007) Prevalence of bacterial pathogens in biofilms of drinking water distribution systems. J Water Health 5:219–227

    CAS  Google Scholar 

  • Shah D, Zhang Z, Khodursky A, Kaldalu N, Kurg K, Lewis K (2006) Persisters: a distinct physiological state of E. coli. BMC Microbiol 6:53. doi:10.1186/1471-2180-6-53

    Article  CAS  Google Scholar 

  • Shoji T, Ochi S, Ozaki M (2008) Characterization of bacterial biofilm communities in tertiary treatment processes for wastewater reclamation and reuse. Water Sci Technol 58:1023–1030. doi:10.2166/wst.2008.457

    Article  CAS  Google Scholar 

  • Smith B, Oliver JD (2006) In situ and in vitro gene expression by Vibrio vulnificus during entry into, persistence within, and resuscitation from the viable but nonculturable state. Appl Environ Microbiol 72:1445–1451. doi:10.1128/AEM.72.2.1445-1451.2006

    Article  CAS  Google Scholar 

  • Srinivasan S, Ostling J, Charlton T, de Nys R, Takayama K, Kjelleberg S (1998) Extracellular signal molecule(s) involved in the carbon starvation response of marine Vibrio sp. strain S14. J Bacteriol 180:201–209

    CAS  Google Scholar 

  • Villarino A, Bouvet O, Regnault B, Delautre S, Grimont PAD (2000) Cellular activities in ultra-violet killed Escherichia coli. Int J Food Microbiol 55:245–247. doi:10.1016/S0168-1605(00)00178-1

    Article  CAS  Google Scholar 

  • Wai SN, Mizunoe Y, Takade A, Yoshida S (2000) A comparison of solid and liquid media for resuscitation of starvation- and low-temperature-induced nonculturable cells of Aeromonas hydrophila. Arch Microbiol 173:307–310. doi:10.1007/s002030000142

    Article  CAS  Google Scholar 

  • Wang S, Zhu R, Peng B, Liu M, Lou Y, Ye X, Xu Z, Liu D, Peng X (2006) Identification of alkaline proteins that are differentially expressed in an overgrowth-mediated growth arrest and cell death of Escherichia coli by proteomic methodologies. Proteomics 6:5212–5220. doi:10.1002/pmic.200500065

    Article  CAS  Google Scholar 

  • Whitesides MD, Oliver DB (1997) Resuscitation of Vibrio vulnificus from the viable but nonculturable state. Appl Environ Microbiol 64:3025–3028

    Google Scholar 

  • Wong HC, Shen CT, Chang CN, Lee Y, Oliver JD (2004a) Biochemical and virulence characterization of viable but nonculturable cells of Vibrio parahaemolyticus. J Food Prot 67:2430–2435

    CAS  Google Scholar 

  • Wong HC, Wang P, Chen SY, Chiu SW (2004b) Resuscitation of viable but non-culturable Vibrio parahaemolyticus in a minimum salt medium. FEMS Microbiol Lett 233:269–275. doi:10.1111/j.1574-6968.2004.tb09491.x

    Article  CAS  Google Scholar 

  • Xu HS, Roberts N, Singleton FL, Attwell RW, Grimes DJ, Colwell RR (1982) Survival and viability of non-culturable E. coli and Vibrio cholerae in the estuarine and marine environment. Microb Ecol 8:313–323. doi:10.1007/BF02010671

    Article  Google Scholar 

  • Ziprin RL, Droleskey RE, Hume ME, Harvey RB (2003) Failure of viable nonculturable Campylobacter jejuni to colonize the cecum of newly hatched leghorn chicks. Avian Dis 47:753–758. doi:10.1637/7015

    Article  Google Scholar 

Download references

Acknowledgments

We thank to Adele Hopley for assistance with the translation to English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel Barcina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barcina, I., Arana, I. The viable but nonculturable phenotype: a crossroads in the life-cycle of non-differentiating bacteria?. Rev Environ Sci Biotechnol 8, 245–255 (2009). https://doi.org/10.1007/s11157-009-9159-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11157-009-9159-x

Keywords

Navigation