Skip to main content
Log in

Lunar Exploration Neutron Detector for the NASA Lunar Reconnaissance Orbiter

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

The design of the Lunar Exploration Neutron Detector (LEND) experiment is presented, which was optimized to address several of the primary measurement requirements of NASA’s Lunar Reconnaissance Orbiter (LRO): high spatial resolution hydrogen mapping of the Moon’s upper-most surface, identification of putative deposits of appreciable near-surface water ice in the Moon’s polar cold traps, and characterization of the human-relevant space radiation environment in lunar orbit. A comprehensive program of LEND instrument physical calibrations is discussed and the baseline scenario of LEND observations from the primary LRO lunar orbit is presented. LEND data products will be useful for determining the next stages of the emerging global lunar exploration program, and they will facilitate the study of the physics of hydrogen implantation and diffusion in the regolith, test the presence of water ice deposits in lunar cold polar traps, and investigate the role of neutrons within the radiation environment of the shallow lunar surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AC:

Anti-coincidence

ACS:

Anti-coincidence system

CSEN 1–4:

Collimated sensor of epithermal neutrons 1–4

DB:

Data base

DSA:

Deep space antenna

eV:

Electron-volt

FPGA:

Field programmable gate array

FOV:

Field of view

FRE:

Front-end/read-out electronics

FRE&S:

Front-end/read-out electronics and selection

FU:

Flight unit

FWHM:

Full width half maximum

GSFC:

Goddard space flight center

HV:

High voltage

HVP:

High voltage provision

IKI:

Russian acronym for institute for space research

LCROSS:

Lunar crater observation and sensing satellite

LEND:

Lunar exploration neutron detector

LND:

Name of manufactory of neutron sensors

LOLA:

Lunar orbiter laser altimeter

LRO:

Lunar reconnaissance orbiter

LVP:

Low voltage provision

MeV:

Mega electron-volt

MC:

Module of collimation

MHz:

Mega-hertz

MLI:

Multi-layer isolation

MOC:

Mission operation center

MSE:

Module of sensors and electronics

OSR:

Optical solar reflector

PDS:

Planetary data system

PMT:

Photo-multiplier tube

ppm:

Particles per million

PPS:

Pulse per second

RAM:

Random access memory

RTAX:

Radiation tolerant model of Actel FPGA

S/C:

Spacecraft

SHEN:

Sensor of high energy neutrons

SETN:

Sensor of epithermal neutrons

SOC:

Science operation center

STD:

Standard

STN 1–3:

Sensor of thermal neutrons 1–3

SPE:

Solar particle events

TCS:

Thermal control system

UMD:

University of Maryland

UofA:

University of Arizona

QU:

Qualification unit

References

  • G. Chin et al., Space Sci. Rev. 129, 391 (2007)

    Article  ADS  Google Scholar 

  • D.H. Crider, R.R. Vondrak, J. Geophys. Res. 105, 26773 (2000)

    Article  ADS  Google Scholar 

  • D.H. Crider, R.R. Vondrak, J. Geophys. Res. 108, 5079 (2003)

    Article  Google Scholar 

  • L. Gorn, B. Khazanov, Selective Radiometers (Atomizdat, Moscow, 1975) (in Russian)

    Google Scholar 

  • W.C. Feldman, W.V. Boynton, D.M. Drake, in Remote Geochemical Analysis: Elemental and Mineralogical Composition, ed. by C. Pieters and P. Englert (1993), p. 213

  • W. Feldman, D. Drake, Nucl. Instrum. Methods Phys. Res. A 245, 182 (1986)

    Article  ADS  Google Scholar 

  • W.C. Feldman, S. Maurice, A.B. Binder, B.L. Barraclough, R.C. Elphic, D.J. Lawrence, Science 281, 1496 (1998)

    Article  ADS  Google Scholar 

  • W.C. Feldman, D.J. Lawrence, R.C. Elphic, B.L. Barraclough, S. Maurice, I. Genatay, A.B. Binder, J. Geophys. Res. 105, 4175 (2000)

    Article  ADS  Google Scholar 

  • H.H. Hsieh, D. Jewitt, Science 321, 561 (2006)

    Article  ADS  Google Scholar 

  • D.J. Lawrence, W.C. Feldman, R.C. Elphic, J.J. Hagerty, S. Maurice, G.W. McKinney, T.H. Prettyman, J. Geophys. Res. 111, E08001 (2006)

    Article  Google Scholar 

  • J. Masarik, R. Reedy, J. Geophys. Res. 101, 18 891 (1996)

    Article  ADS  Google Scholar 

  • S. Maurice, D.J. Lawrence, W.C. Feldman, R.C. Elphic, O. Gasnault, J. Geophys. Res. 109, E07S04 (2004)

    Article  Google Scholar 

  • T. McClanahan et al., Abstract # 2092 at 40th Lunar and Planetary Science Conference (2009)

  • A.E. Metzger, J.I. Trombka, L.E. Peterson, R.C. Reedy, J.R. Arnold, Science 179, 800 (1973)

    Article  ADS  Google Scholar 

  • I.G. Mitrofanov et al., Astrobiology 8(4), 793 (2008)

    Article  ADS  Google Scholar 

  • T.H. Prettyman, Remote Chemical Sensing Using Nuclear Spectroscopy. Encyclopedia of the Solar System, 2e (Academic Press, San Diego, 2007, this issue), 765 pages

    Google Scholar 

  • D. Paige et al., Space Sci. Rev. (2009). doi:10.1007/s11214-009-9529-2

  • S. Nozette, C.L. Lichtenberg, P. Spudis, R. Bonner, W. Ort, E. Malaret, M. Robinson, E.M. Shoemaker, Science 274, 1495 (1996)

    Article  ADS  Google Scholar 

  • D.E. Smith et al., Space Sci. Rev. (2009). doi:10.1007/s11214-009-9512-y

  • A.P. Vinogradov, Yu.A. Surkov, G.M. Chernov, F.F. Kirnozov, G.B. Nazarkina, Cosmic Res. 4, 751 (1966)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. G. Mitrofanov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitrofanov, I.G., Bartels, A., Bobrovnitsky, Y.I. et al. Lunar Exploration Neutron Detector for the NASA Lunar Reconnaissance Orbiter. Space Sci Rev 150, 183–207 (2010). https://doi.org/10.1007/s11214-009-9608-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-009-9608-4

Navigation