Skip to main content
Log in

Au/ZnO and Au/Fe2O3 catalysts for CO oxidation at ambient temperature: comments on the effect of synthesis conditions on the preparation of high activity catalysts prepared by coprecipitation

  • Published:
Topics in Catalysis Aims and scope Submit manuscript

The preparation of Au/ZnO and Au/Fe2O3 catalysts using two coprecipitation methods is investigated to determine the important factors that control the synthesis of high activity catalysts for the oxidation of carbon monoxide at ambient temperature. In particular, the factors involved in the preparation of catalysts that are active without the need for a calcination step are evaluated. The two preparation methods differ in the manner in which the pH is controlled during the precipitation, either constant pH throughout or variable pH in which the pH is raised from an initial low value to a defined end point. Non-calcined Au/ZnO catalysts prepared using both methods are very sensitive to pH and ageing time, and catalysts prepared at a maximum pH = 5 with a short ageing time (ca. 0–3 h) exhibit high activity. Catalysts prepared at higher pH give lower activity. However, all catalysts require a short operation period during which the oxidation activity increases. In contrast, the calcined catalysts are not particularly sensitive to the preparation conditions. Non-calcined Au/Fe2O3 catalysts exhibit high activity when prepared at pH ≥ 5. Calcined Au/Fe2O3 prepared using the controlled pH method retain high activity, whereas calcined catalysts prepared using the variable pH method are inactive. The study shows the immense sensitivity of the catalyst performance to the preparation methods. It is therefore not surprising that marked differences in the performance of supported Au catalysts for CO oxidation that are apparent in the extensive literature on this subject, particularly the effect of calcination, can be expected if the preparation parameters are not carefully controlled and reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.C. Bond D.T. Thompson (1999) Catal. Rev.-Sci. Eng. 41 319 Occurrence Handle10.1081/CR-100101171 Occurrence Handle1:CAS:528:DyaK1MXmvFehsLk%3D

    Article  CAS  Google Scholar 

  2. G.C. Bond D.T. Thompson (2000) Gold Bull. 33 2

    Google Scholar 

  3. A.S.K. Hashi G.J. Hutchings (2006) Angew. Chem., Int. Ed. 45 7896 Occurrence Handle10.1002/anie.200602454

    Article  Google Scholar 

  4. M. Date Y. Y.Ichihashi T. Yamashita A. Chiorino F. Boccuzzi M. Haruta (2002) Catal. Today 72 89 Occurrence Handle10.1016/S0920-5861(01)00481-3 Occurrence Handle1:CAS:528:DC%2BD38XisV2jtb8%3D

    Article  CAS  Google Scholar 

  5. S. Lee A. Gavriilidis Q.A. Pankhurst A. Kyek F.E. Wagner P.C.L. Wong K.L. Yeung (2001) J. Catal. 200 298 Occurrence Handle10.1006/jcat.2001.3209 Occurrence Handle1:CAS:528:DC%2BD3MXktVKlsb4%3D

    Article  CAS  Google Scholar 

  6. J.E. Bailie H.A. Abdullah J.A. Anderson C.H. Rochester N.V. Richardson N. Hodge J.-G. Zhang A. Burrows C.J. Kiely G.J. Hutchings (2001) Phys. Chem. Chem. Phys. 3 4113 Occurrence Handle10.1039/b103880j Occurrence Handle1:CAS:528:DC%2BD3MXmvV2iurY%3D

    Article  CAS  Google Scholar 

  7. N.A. Hodge C.J. Kiely R. Whyman M.R.H. Siddiqui G.J. Hutchings Q.A. Pankhurst F.E. Wagner R.R. Rajaram S.E. Golunski (2002) Catal. Today 72 133 Occurrence Handle10.1016/S0920-5861(01)00487-4 Occurrence Handle1:CAS:528:DC%2BD38XisV2jtbk%3D

    Article  CAS  Google Scholar 

  8. M. Cortie R. Holliday A. Laguna B. Nieuwenhuys D.T. Thompson (2003) Gold Bull. 36 144

    Google Scholar 

  9. A.M. Visco F. Neri G. Neri A. Donato C. Milone S. Galvagno (1999) Phys. Chem. Chem. Phys. 1 2869 Occurrence Handle10.1039/a900838a Occurrence Handle1:CAS:528:DyaK1MXktlelsbg%3D

    Article  CAS  Google Scholar 

  10. Y.J. Chen C.T. Yeh (2001) J. Catal. 200 59 Occurrence Handle10.1006/jcat.2001.3199 Occurrence Handle1:CAS:528:DC%2BD3MXjtVGlsLc%3D

    Article  CAS  Google Scholar 

  11. Q. Fu A. Weber M. Flytzani-Stephanopoulos (2001) Catal. Lett. 77 87 Occurrence Handle10.1023/A:1012666128812 Occurrence Handle1:CAS:528:DC%2BD3MXptlKqtLo%3D

    Article  CAS  Google Scholar 

  12. Q. Fu S. Kudriavtseva H. Saltsburg M. Flytzani-Stephanopoulos (2003) Chem. Eng. J. 93 41 Occurrence Handle10.1016/S1385-8947(02)00107-9 Occurrence Handle1:CAS:528:DC%2BD3sXitleqs7o%3D

    Article  CAS  Google Scholar 

  13. S. Schimpf M. Lucas C. Mohr U. Rodermerck A. Bruckner J. Radnik H. Hofmeister P. Claus (2002) Catal. Today 72 63 Occurrence Handle10.1016/S0920-5861(01)00479-5 Occurrence Handle1:CAS:528:DC%2BD38XisV2jtLc%3D

    Article  CAS  Google Scholar 

  14. M. Okumura T. Akita M. Haruta (2002) Catal. Today 74 265 Occurrence Handle10.1016/S0920-5861(02)00034-2 Occurrence Handle1:CAS:528:DC%2BD38XksFOjsL4%3D

    Article  CAS  Google Scholar 

  15. F. Moreau G.C. Bond A.O. Taylor (2005) J. Catal. 231 105 Occurrence Handle10.1016/j.jcat.2005.01.030 Occurrence Handle1:CAS:528:DC%2BD2MXisFyitb0%3D

    Article  CAS  Google Scholar 

  16. G.J. Hutchings M.S. Hall A.F. Carley P. Landon B.E. Solsona C.J. Kiely A. Herzing M. Makkee J.A. Moulijn A Overweg J. Carlos Fierro-Gonzalez J. Guzman B.C. Gates (2006) J. Catal. 242 71 Occurrence Handle10.1016/j.jcat.2006.06.001 Occurrence Handle1:CAS:528:DC%2BD28XnsFOqsL8%3D

    Article  CAS  Google Scholar 

  17. P. Landon J. Ferguson B.E. Solsona T. Garcia S. Al-Sayari A.F. Carley A. Herzing C.J. Kiely M. Makkee J.A. Moulijn A. Overweg S.E. Golunski G.J. Hutchings (2006) J. Mat. Chem. 16 199 Occurrence Handle10.1039/b510762h Occurrence Handle1:CAS:528:DC%2BD2MXhtlanur%2FJ

    Article  CAS  Google Scholar 

  18. G.J. Hutchings and J.C. Vedrine, Heterogeneous catalyst preparation. Springer Series in Chemical Physics (Basic Principles in Applied Catalysis), 75 (2004) 217

  19. G.H. Hutchings M.R.H. Sideiqi A. Burrows C.J. Kiely R. Whyman (1997) J. Chem. Soc. Faraday Trans 93 187 Occurrence Handle10.1039/a606482e Occurrence Handle1:CAS:528:DyaK2sXhtFOltLw%3D

    Article  CAS  Google Scholar 

  20. D.M. Whittle A.A. Mirzaei J.S.J. Hargreaves R.W. Joyner C.J. Kiely S.H. Taylor G.J. Hutchings (2002) Phys. Chem. Chem. Phys. 4 5915 Occurrence Handle10.1039/b207691h Occurrence Handle1:CAS:528:DC%2BD38Xos1KntLs%3D

    Article  CAS  Google Scholar 

  21. G.J. Hutchings A.A. Mirazei R.W. Joyner M.R.H. Siddiqui S.H. Taylor (1996) Catal. Lett. 42 21 Occurrence Handle10.1007/BF00814462 Occurrence Handle1:CAS:528:DyaK28XntFCktLs%3D

    Article  CAS  Google Scholar 

  22. A.A. Mirzaei H.R. Shaterian R.W. Joyner M. Stockenhuber S.H. Taylor G.J. Hutchings (2003) Catal. Commun. 4 17 Occurrence Handle10.1016/S1566-7367(02)00231-5 Occurrence Handle1:CAS:528:DC%2BD38Xpt1eqsb0%3D

    Article  CAS  Google Scholar 

  23. M. Daté M. Okumura S. Tsubota M. Haruta (2004) Angew. Chem. Int. Ed. 43 2129 Occurrence Handle10.1002/anie.200453796

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graham J. Hutchings.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al-Sayari, S., Carley, A.F., Taylor, S.H. et al. Au/ZnO and Au/Fe2O3 catalysts for CO oxidation at ambient temperature: comments on the effect of synthesis conditions on the preparation of high activity catalysts prepared by coprecipitation. Top Catal 44, 123–128 (2007). https://doi.org/10.1007/s11244-007-0285-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-007-0285-9

Keywords

Navigation