Skip to main content
Log in

Nanocatalysis on Supported Oxides for CO Oxidation

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Active gold and palladium nanoparticles supported on a variety of oxides (CeO2, ZrO2, Al2O3, SiO2, MgO and ZnO) were synthesized using laser vaporization and microwave irradiation methods. The catalytic activities for CO oxidation on the nanoparticle catalysts were evaluated and compared among different oxide supports. The effect of shape on the catalytic activity is demonstrated by comparing the activities of the Au and Pd catalysts deposited on MgO nanocubes and ZnO nanobelts. The Au/CeO2 nanoparticles deposited on MgO nanocubes exhibit high catalytic activity and stability. The enhanced catalytic activity is attributed to the presence of a significant concentration of the corner and edge sites in MgO nanocubes. The Au- and Pd-doped Mn2O3 nanoparticles show promising results for the low temperature CO oxidation. Several approaches for incorporating the Au and Pd nanocatalysts within mesoporous oxide supports are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Somorjai GA (1994) Introduction to surface chemistry and catalysis. Wiley Publishers, New York

    Google Scholar 

  2. Moser WR (ed) (1996) Advanced catalysts and nanostructured materials. Academic Press

  3. Henrich VE, Cox PA (1996) The surface science of metal oxides. Cambridge University Press, Cambridge

    Google Scholar 

  4. Chusuei CC, Lai X, Luo K, Goodman DW (2001) Top Catal 14:71

    Article  Google Scholar 

  5. Ying JY, Tschope A (1996) In: Moser WR (ed) Advanced catalysts and nanostructured materials, Chapter 10. Academic press, pp 231–256

  6. Haruta M, Tsubota S, Kobayashi T, Kageyama H, Genet MJ, Delmon B (1993) J Catal 144:175

    Article  CAS  Google Scholar 

  7. Valden M, Lai X, Goodman DW (1998) Science 281:1647

    Article  CAS  Google Scholar 

  8. Choudhary TV, Goodman DW (2002) Top Catal 21:25–34

    Article  CAS  Google Scholar 

  9. Chou KC, Markovic NM, Kim J, Ross PN, Somorjai GA (2003) J Phys Chem B 107:1840

    Article  CAS  Google Scholar 

  10. Chen MS, Goodman DW (2004) Science 306:252–255

    Article  CAS  Google Scholar 

  11. Bond GC, Thompson DT (1999) Catal Rev Sci Eng 41:319–388

    Article  CAS  Google Scholar 

  12. Haruta M (1997) Catal Today 36:153–166

    Article  CAS  Google Scholar 

  13. Hutchings GJ (1996) Gold Bulletin 29:123–130

    CAS  Google Scholar 

  14. Hayashi T, Tanaka K, Haruta M (1998) J Catal 178:566–575

    Article  CAS  Google Scholar 

  15. Haruta M, Tsubota S, Kobayashi T, Kageyama H, Genet MJ, Delmon B (1993) J Catal 144:175

    Article  CAS  Google Scholar 

  16. Moreau F, Bond GC (2006) Catal Today 114:362

    Article  CAS  Google Scholar 

  17. World Health Organization (1999) Carbon monoxide: environmental health criteria. World Health Organization, Geneva, p 213

  18. El-Shall MS, Slack W, Vann W, Kane D, Hanley D (1994) J Phys Chem 52:3067–3070

    Article  Google Scholar 

  19. El-Shall MS, Li S, Graiver D, Pernisz UC (1996) In: Chow G, Gonsalves KE (eds) Nanotechnology: molecularly designed nanostructural materials. ACS Symposium Series 622, Chapter 5, pp 79–99

  20. Li S, Silvers S, El-Shall MS (1997) J Phys Chem 101:1794

    CAS  Google Scholar 

  21. Yang Y, Saoud KM, Abdelsayed V, Glaspell G, Deevi S, El-Shall MS (2006) Catal Commun 7:281–284

    Article  CAS  Google Scholar 

  22. Glaspell G, Abdelsayed V, Saoud KM, El-Shall MS (2006) Pure Appl Chem 78:1671–1693

    Article  CAS  Google Scholar 

  23. Glaspell G, Fuoco L, El-Shall M (2005) J Phys Chem B 109:14350

    Article  CAS  Google Scholar 

  24. Travarelli A, Leitenburg C, Dolcetti G, Boaro M (1999) Catal Today 50:353–367

    Article  Google Scholar 

  25. Fu Q, Weber A, Flytzani-Stephanopoulos M (2001) Catal Lett 77:1–3

    Article  Google Scholar 

  26. Narayanan R, El-Sayed MA (2004) Nano Lett 4:1343

    Article  CAS  Google Scholar 

  27. Narayanan R, El-Sayed MA (2005) J Phys Chem B 09:12663

    Article  CAS  Google Scholar 

  28. Huang P, Wu F, Zhu B, Gao X, Zhu H, Yan T, Huang W, Wu S, Song D (2005) J Phys Chem B 109:19169

    Article  CAS  Google Scholar 

  29. Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chem Rev 105:1025

    Article  CAS  Google Scholar 

  30. Mu YY, Liang HP, Hu JS, Jiang L, Wan LJ (2005) J Phys Chem B 109:22212

    Article  CAS  Google Scholar 

  31. Kongkanand A, Vingodgopal K, Kuwabata S, Kamat P (2006) J Phys Chem B 110:16185

    Article  CAS  Google Scholar 

  32. Konzinger E, Jacob KH, Hofmann P (1993) J Chem Soc Faraday Trans 89:1101

    Article  Google Scholar 

  33. Klabunde KJ, Stark J, Koper O, Mohs C, Park DG, Decker S, Jiang Y, Lagadic I, Zhang D (1996) J Phys Chem 100:12142

    Article  CAS  Google Scholar 

  34. Kakkar R, Kapoor PN, Klabunde KJ (2004) J Phys Chem B 108:18140

    Article  CAS  Google Scholar 

  35. Glaspell G, Hassan HMA, Elzatahry A, Fuoco L, Radwan NRE, El-Shall MS (2006) J Phys Chem B 110:21387–21393

    Article  CAS  Google Scholar 

  36. Huang P, Wu F, Zhu B, Gao X, Zhu H, Yan T, Huang W, Wu S, Song D (2005) J Phys Chem B 109:19169

    Article  CAS  Google Scholar 

  37. Xu R, Wang X, Wang D, Zhou K, Li Y (2006) J Catal 237:426

    Article  CAS  Google Scholar 

  38. Zheng Y, Cheng Y, Wang Y, Bao F, Zhou L, Wei X, Zhang Y, Zheng Q (2006) J Phys Chem B 110:3093

    Article  CAS  Google Scholar 

  39. Scott RWJ, Sivadinarayana C, Wilson OM, Yan Z, Goodman DW, Crooks RM (2005) J Am Chem Soc 127:1380–1381

    Article  CAS  Google Scholar 

  40. Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Nature 359:710

    Article  CAS  Google Scholar 

  41. Corma A (1997) Chem Rev 97:2373

    Article  CAS  Google Scholar 

  42. Yang P, Zhao D, Margolese DI, Chmelka BF, Stucky GD (1998) Nature 396:152

    Article  CAS  Google Scholar 

  43. Zhu H, Lee B, Dai S, Overbury SH (2003) Langmuir 19:3974–3989

    Article  CAS  Google Scholar 

  44. Abdelsayed V, Pands A, El-Shall MS in preparation

Download references

Acknowledgments

We thank Mr. Minh Nguyen for helping with the Mn2O3 experiments. We thank the National Science Foundation for supporting this work through the US-Egypt Cooperative Research Program (OISE-0413971) and the CHE-0414613 Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Samy El-Shall.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glaspell, G., Hassan, H.M.A., Elzatahry, A. et al. Nanocatalysis on Supported Oxides for CO Oxidation. Top Catal 47, 22–31 (2008). https://doi.org/10.1007/s11244-007-9036-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-007-9036-1

Keywords

Navigation