Skip to main content
Log in

Lack of glucokinase regulatory protein expression may contribute to low glucokinase activity in feline liver

  • Original Article
  • Published:
Veterinary Research Communications Aims and scope Submit manuscript

Abstract

In most mammals, glucokinase (GK) acts as a hepatic “glucose sensor” that permits hepatic metabolism to respond appropriately to changes in plasma glucose concentrations. GK activity is potently regulated by the glucokinase regulatory protein (GKRP), which is encoded by the GCKR gene. GKRP binds GK in the nucleus and inhibits its activity. GK becomes active when it is released from GKRP and translocates to the cytosol. Low glucokinase (GK) activity is reported to be a principal feature of feline hepatic carbohydrate metabolism but the molecular pathways that regulate GK activity are not known. This study examined the hypothesis that species-specific differences in GKRP expression parallel the low GK activity observed in feline liver. Hepatic GKRP expression was examined using RT-PCR, immunoblot, and confocal immunomicroscopy. The results show that the GCKR gene is present in the feline genome but GCKR mRNA and the GKRP protein were absent in feline liver. The lack of GKRP expression in feline liver indicates that the low GK activity cannot be the result of GKRP-mediated inhibition of the GK enzyme. However, the absence of the permissive effects of GCKR expression on GK expression and activity may contribute to reduced GK enzyme activity in feline liver. The study results show that the cat is a natural model for GCKR knockout and may be useful to study regulation of GCKR expression and its role in hepatic glucose-sensing and carbohydrate metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agius L. The physiological role of glucokinase binding and translocation in hepatocytes. Adv Enzyme Regul. 38:303–31, 1998. doi:10.1016/S0065-2571(97)00001-0

    Article  PubMed  CAS  Google Scholar 

  • Ballard FJ. Glucose utilization in mammalian liver. Comp Biochem Physiol. 14:437–43, 1965. doi:10.1016/0010-406X(65)90218-5

    Article  PubMed  CAS  Google Scholar 

  • Chu CA, Fujimoto Y, Igawa K, Grimsby J, Grippo JF, Magnuson MA, Cherrington AD, and Shiota M. Rapid translocation of hepatic glucokinase in response to intraduodenal glucose infusion and changes in plasma glucose and insulin in conscious rats. Am J Physiol Gastrointest Liver Physiol. 2864:G627–34, 2004. doi:10.1152/ajpgi.00218.2003

    Article  PubMed  CAS  Google Scholar 

  • de la Iglesia N, Mukhtar M, Seoane J, Guinovart JJ, and Agius L. The role of the regulatory protein of glucokinase in the glucose sensory mechanism of the hepatocyte. J Biol Chem. 27514:10597–603, 2000. doi:10.1074/jbc.275.14.10597

    Article  PubMed  Google Scholar 

  • Farrelly D, Brown KS, Tieman A, Ren J, Lira SA, Hagan D, Gregg R, Mookhtiar KA, and Hariharan N. Mice mutant for glucokinase regulatory protein exhibit decreased liver glucokinase: a sequestration mechanism in metabolic regulation. Proc Natl Acad Sci U S A. 9625:14511–6, 1999. doi:10.1073/pnas.96.25.14511

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Novell JM, Castel S, Bellido D, Ferrer JC, Vilaro S, and Guinovart JJ. Intracellular distribution of hepatic glucokinase and glucokinase regulatory protein during the fasted to refed transition in rats. FEBS Lett. 4592:211–4, 1999. doi:10.1016/S0014-5793(99)01249-1

    Article  PubMed  CAS  Google Scholar 

  • Grimsby J, Coffey JW, Dvorozniak MT, Magram J, Li G, Matschinsky FM, Shiota C, Kaur S, Magnuson MA, and Grippo JF. Characterization of glucokinase regulatory protein-deficient mice. J Biol Chem. 27511:7826–31, 2000. doi:10.1074/jbc.275.11.7826

    Article  PubMed  CAS  Google Scholar 

  • Li X, Li W, Wang H, Cao J, Maehashi K, Huang L, Bachmanov AA, Reed DR, Legrand-Defretin V, Beauchamp GK, and Brand JG. Pseudogenization of a Sweet-Receptor Gene Accounts for Cats’ Indifference toward Sugar. PLoS Genet. 11:e3, 2005. doi:10.1371/journal.pgen.0010003

    Article  Google Scholar 

  • Lindbloom S, LeCluyse M, Schermerhorn T. Cloning and comparative bioinformatic analysis of feline glucose-6-phosphatase catalytic subunit cDNA. DNA Sequence 193:256–263, 2008. doi:10.1080/10425170701574920

    Article  PubMed  CAS  Google Scholar 

  • Pilkis SJ, Hansen RJ, and Krahl ME. Hexose-ATP phosphotransferases: comparative aspects. Comp Biochem Physiol. 253:903–12, 1968. doi:10.1016/0010-406X(68)90578-1

    Article  PubMed  CAS  Google Scholar 

  • Postic C, Shiota M, Niswender KD, Jetton TL, Chen Y, Moates JM, Shelton KD, Lindner J, Cherrington AD, and Magnuson MA. Dual roles for glucokinase in glucose homeostasis as determined by liver and pancreatic beta cell-specific gene knock-outs using Cre recombinase. J Biol Chem. 2741:305–15, 1999. doi:10.1074/jbc.274.1.305

    Article  PubMed  CAS  Google Scholar 

  • Postic C, Shiota M, and Magnuson MA. Cell-specific roles of glucokinase in glucose homeostasis. Recent Prog Horm Res. 56:195–217, 2001. doi:10.1210/rp.56.1.195

    Article  PubMed  CAS  Google Scholar 

  • Printz RL and Granner DK. Tweaking the glucose sensor: adjusting glucokinase activity with activator compounds. Endocrinology 1469:3693–5, 2005. doi:10.1210/en.2005-0689

    Article  PubMed  CAS  Google Scholar 

  • Rogers QR, Morris JG, and Freedland RA. Lack of hepatic enzymatic adaptation to low and high levels of dietary protein in the adult cat. Enzyme 225:348–56, 1977.

    PubMed  CAS  Google Scholar 

  • Schnell SA, Staines WA, and Wessendorf MW. Reduction of lipofuscin-like autofluorescence in fluorescently labeled tissue. J Histochem Cytochem. 476:719–30, 1999.

    PubMed  CAS  Google Scholar 

  • Shiota C, Coffey J, Grimsby J, Grippo JF, and Magnuson MA. Nuclear import of hepatic glucokinase depends upon glucokinase regulatory protein, whereas export is due to a nuclear export signal sequence in glucokinase. J Biol Chem. 27452:37125–30, 1999. doi:10.1074/jbc.274.52.37125

    Article  PubMed  CAS  Google Scholar 

  • Tanaka A, Inoue A, Takeguchi A, Washizu T, Bonkobara M, and Arai T. Comparison of expression of glucokinase gene and activities of enzymes related to glucose metabolism in livers between dog and cat. Vet Res Commun. 296:477–85, 2005. doi:10.1007/s11259-005-1868-1

    Article  PubMed  CAS  Google Scholar 

  • Tiedge M, Krug U, and Lenzen S. Modulation of human glucokinase intrinsic activity by SH reagents mirrors post-translational regulation of enzyme activity. Biochim Biophys Acta. 13372:175–90, 1997.

    PubMed  CAS  Google Scholar 

  • Vandercammen A, Van Schaftingen E. Species and tissue distribution of the regulatory protein of glucokinase. Biochem J. 294 Pt 2:551–6, 1993.

    PubMed  CAS  Google Scholar 

  • Washizu T, Tanaka A, Sako T, Washizu M, and Arai T. Comparison of the activities of enzymes related to glycolysis and gluconeogenesis in the liver of dogs and cats. Res Vet Sci. 672:205–6, 1999. doi:10.1053/rvsc.1998.0305

    Article  PubMed  CAS  Google Scholar 

  • Wilson JE. Isozymes of mammalian hexokinase: structure, subcellular localization and metabolic function. J Exp Biol. 206Pt 12:2049–57, 2003. doi:10.1242/jeb.00241

    Article  PubMed  CAS  Google Scholar 

  • Zoran DL. The carnivore connection to nutrition in cats. J Am Vet Med Assoc. 22111:1559–67, 2002, Dec 1.

    Article  PubMed  CAS  Google Scholar 

Download references

Grants

Supported by the Morris Animal Foundation (TS) and the Winn Feline Foundation (TS).

Disclosures

No disclosures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Schermerhorn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hiskett, E.K., Suwitheechon, Ou., Lindbloom-Hawley, S. et al. Lack of glucokinase regulatory protein expression may contribute to low glucokinase activity in feline liver. Vet Res Commun 33, 227–240 (2009). https://doi.org/10.1007/s11259-008-9171-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11259-008-9171-6

Keywords

Navigation