Skip to main content
Log in

Automated Renal Cell Carcinoma Subtype Classification Using Morphological, Textural and Wavelets Based Features

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

We present a new image quantification and classification method for improved pathological diagnosis of human renal cell carcinoma. This method combines different feature extraction methodologies, and is designed to provide consistent clinical results even in the presence of tissue structural heterogeneities and data acquisition variations. The methodologies used for feature extraction include image morphological analysis, wavelet analysis and texture analysis, which are combined to develop a robust classification system based on a simple Bayesian classifier. We have achieved classification accuracies of about 90% with this heterogeneous dataset. The misclassified images are significantly different from the rest of images in their class and therefore cannot be attributed to weakness in the classification system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Esgiar, A. N., Naguib, R. N. G., Sharif, B. S., Bennett, M. K., & Murray, A. (1998). Microscopic image analysis for quantitative measurement and feature identification of normal and cancerous colonic mucosa. IEEE Transactions on Information Technology Biomedicine, 2, 197–203.

    Article  Google Scholar 

  2. Vermeulena, P. B., Gasparinib, G., Foxc, S. B., Toid, M., Martine, L., Mcculloche, P., Pezzellaf, F., Vialeg, G., Weidnerh, N., Harrisc, A. L., & Dirix, L. Y. (1996). Quantification of angiogenesis in solid human tumors: an international consensus on the methodology and criteria of evaluation. European Journal of Cancer, 32(14), 2474–2484.

    Google Scholar 

  3. Roula, M. A., Diamond, J., Bouridane, A., Miller, P., & Amira, A. (2002). A multispectral computer vision system for automatic grading of prostatic neoplasia. Proc. IEEE Int. Symp. On Biomed. Imaging, 193–196.

  4. Thiran, J. P., & Macq, B. (1996). Morphological feature extraction for the classification of digital images of cancerous tissues. IEEE Transactions on Biomedical Engineering, 43(10), 1011–1020.

    Article  Google Scholar 

  5. Diamond, J., Anderson, N., Bartels, P., Montironi, R., & Hamilton, P. (2004). The use of morphological characteristics and texture analysis in the identification of tissue composition in prostatic neoplasia. Human Pathology, 35, 1121–1131.

    Article  Google Scholar 

  6. Walker, R. F., Jackway, P. T., Lovell, B., & Longstaff, I. D. (1994). Classification of cervical cell nuclei using morphological segmentation and textural feature extraction. Proc of the 2nd Australian and New Zealand Conference on Intelligent Information Systems, 297–301.

  7. Esgiar, A. N., Naguib, R. N. G., Sharif, B. S., Bennett, M. K., & Murray, A. (2002). Fractal analysis in the detection of colonic cancer images. IEEE Transactions on Information Technology Biomedicine, 6, 54–58.

    Article  Google Scholar 

  8. Depeursinge, A., Sage, D., Hidki, A., Platon, A., Poletti, P.-A., Unser, M., & Muller, H. (2007). Lung Tissue Classification Using Wavelet Frames”, 29th Annual International,Conference of the IEEE EMBS, 6259–6262.

  9. Waheed, S., Moffitt, R. A., Chaudry, Q., Young, A. N., & Wang, M. D. (2007). Computer Aided Histopathological Classification of Cancer Subtypes. IEEE BIBE 2007, 503–508.

  10. Weeks, A. R., & Hague, G. E. (1997). Color Segmentation in the HSI Color Space Using the k-means Algorithm. Proceedings of the SPIENonlinear Image Processing, 8, 143–154.

    Google Scholar 

  11. Hauta-Kasari, M., Parkkinen, J., & Jaaskelainen, T. (1996). Generalized co-occurrence matrix for multispectral texture analysis. 13th International Conference on Pattern Recognition, 2, 785–789.

  12. Arivazhagan, S., & Ganesan, L. (2003). Texture classification using wavelet transform. Pattern Recogn Lett, 24(9–10), 1513–1521.

    Article  MATH  Google Scholar 

  13. Unser, M., & Aldroubi, A. (1996). A review of wavelets in biomedical applications. Proceedings of the IEEE, 84(4), 626–638.

    Article  Google Scholar 

  14. Fernandez, M., & Mavilio, A. (2002). Texture analysis of medical images using the wavelet transform. AIP Conference Proceedings, 630, 164–168 October.

    Google Scholar 

Download references

Acknowledgement

This research was supported by grants from the National Institutes of Health (R01CA108468, P20GM072069, and U54CA119338) to M.D.W., Georgia Cancer Coalition (Distinguished Cancer Scholar Award to M.D.W.), Hewlett Packard, and Microsoft Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to May D. Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaudry, Q., Raza, S.H., Young, A.N. et al. Automated Renal Cell Carcinoma Subtype Classification Using Morphological, Textural and Wavelets Based Features. J Sign Process Syst Sign Image Video Technol 55, 15–23 (2009). https://doi.org/10.1007/s11265-008-0214-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-008-0214-6

Keywords

Navigation