Skip to main content
Log in

A Multiscale Approach for Assessing the Interactions of Environmental and Biological Systems in a Holistic Health Risk Assessment Framework

  • Published:
Water, Air, & Soil Pollution: Focus

Abstract

Advances in computing processing power and in availability of environmental and biological data have allowed the development and application of comprehensive modeling systems that utilize a holistic, integrated, approach for assessing the interactions of environmental and biological systems across multiple scales of spatiotemporal extent and biological organization. This approach allows mechanism-based environmental health risk assessments in a person-oriented framework, which accounts for simultaneous exposures to contaminants from multiple media, routes, and pathways. The conceptual basis and example applications of the Modeling ENvironment for TOtal Risk (MENTOR), and the DOse–Response Information ANalysis system (DORIAN) are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abdel-Rahman, S. M., & Kauffman, R. E. (2004). The integration of pharmacokinetics and pharmacodynamics: Understanding dose–response. Annual Review of Pharmacology and Toxicology, 44, 111–136.

    Article  CAS  Google Scholar 

  • Balakrishnan, S., Roy, A., Ierapetritou, M. G., Flach, G. P., & Georgopoulos, P. G. (2003). Uncertainty reduction and characterization of complex environmental fate and transport models: An empirical Bayesian framework incorporating the Stochastic Response Surface Method. Water Resources Research, 39, 1350.

    Article  Google Scholar 

  • Balakrishnan, S., Roy, A., Ierapetritou, M. G., Flach, G. P., & Georgopoulos, P. G. (2005). A comparative assessment of efficient uncertainty analysis techniques for environmental fate and transport models: Application to the FACT model. Journal of Hydrology, 307, 204–218.

    Article  Google Scholar 

  • BMBF (2002). Systeme des Lebens Systembiologie. Bundesministerium fur Bildung und Forschung (BMBF). Germany: BMBF.

  • Brazhnik, P., de la Fuente, A., & Mendes, P. (2002). Gene networks: How to put the function in genomics. Trends Biotechnol, 20, 467–472.

    Article  CAS  Google Scholar 

  • Buck, J. W., Tolle, D. A., Whelan, G., Mast, T. J., Peffers, M. S., Evers, D. P., et al. (2003). Design of the comprehensive chemical exposure framework and identification of research needs for American Chemistry Council. Prepared for American Chemistry Council Long Range Research Initiative Team by Battelle Pacific Northwest Division. Arlington, Virginia. Richland, WA: PNWD (PNWD–3184).

  • Byun, D. W., & Ching, J. K. S. (1999). Science algorithms for the EPA Models-3 Community Multiscale Air Quality (CMAQ) modeling system. Research Triangle Park, NC: US Environmental Protection Agency, National Exposure Research Laboratory (EPA/600/R-99/030).

  • CDC (2005). NHANES national health and nutrition examination survey. Available at: http://www.cdc.gov/nchs/nhanes.htm.

  • Christakos, G., Bogaert, P., & Serre, M. L. (2001). Temporal GIS: Advanced functions for field-based applications. New York: Springer.

    Google Scholar 

  • Christensen, F. M., Bruijn, J. H. M. D., Hansen, B. G., Munn, S. J., Sokull-Klüttgen, B., & Pedersen, F. (2003). Assessment tools under the new European Union chemicals policy (pp. 5–19). UK: Greener Management International (Spring 2003).

    Google Scholar 

  • CIIT (2006). Multiple Path Particle Dosimetry Model (MPPD v 2.0): A model for human and rat airway particle dosimetry. Available at: CIIT Centers for Health Research http://www.ciit.org/techtransfer/tt_technologies.asp.

  • Crampin, E. J., Halstead, M., Hunter, P., Nielsen, P., Noble, D., Smith, N., et al. (2004). Computational physiology and the Physiome Project. Experimental Physiology, 89, 1–26.

    Article  Google Scholar 

  • Daigle, C. C., Chalupa, D. C., Gibb, F. R., Morrow, P. E., Oberdorster, G., Utell, M. J., et al. (2003). Ultrafine particle deposition in humans during rest and exercise. Inhalation Toxicology, 15, 539–552.

    Article  CAS  Google Scholar 

  • Danhof, M., de Jongh, J., De Lange, E. C., Della Pasqua, O., Ploeger, B. A., & Voskuyl, R. A. (2007). Mechanism-based pharmacokinetic–pharmacodynamic modeling: biophase distribution, receptor theory, and dynamical systems analysis. Annual Review of Pharmacology and Toxicology, 47, 357–400.

    Article  CAS  Google Scholar 

  • Foley, G., Georgopoulos, P. G., & Lioy, P. J. (2003). Examining accountability for changes in population exposures to 8-hour ozone standard with implementation of different control strategies. Environmental Science and Technology, 37, 302A–309A.

    Article  Google Scholar 

  • Georgopoulos, P. G., Fedele, P., Shade, P., Lioy, P., Hodgson, M., Longmire, J., et al. (2004). Hospital response to chemical terrorism: Personal protective equipment, training, and operations planning. American Journal of Industrial Medicine, 46, 432–445.

    Article  Google Scholar 

  • Georgopoulos, P. G., & Lioy, P. J. (2006). From theoretical aspects of human exposure and dose assessment to computational model implementation: The MOdeling ENvironment for TOtal Risk studies (MENTOR). Journal of Toxicology and Environmental Health B – Critical Reviews, 9, 457–483.

    Article  CAS  Google Scholar 

  • Georgopoulos, P. G., Walia, A., Roy, A., & Lioy, P. J. (1997). An integrated exposure and dose modeling and analysis system. 1. Formulation and testing of microenvironmental and pharmacokinetic components. Environmental Science and Technology, 31, 17–27.

    Article  CAS  Google Scholar 

  • Georgopoulos, P. G., Wang, S. W., Lioy, P. J., Georgopoulos, I. G., & Yononne-Lioy, M. J. (2006). Assessment of human exposure to copper: A case study using the NHEXAS database. Journal of Exposure Science and Environmental Epidemiology, 16, 397–409.

    Article  CAS  Google Scholar 

  • Georgopoulos, P. G., Wang, S. W., Vyas, V. M., Sun, Q., Burke, J., Vedantham, R., et al. (2005a). A source-to-dose assessment of population exposures to fine PM and ozone in Philadelphia, PA, during a summer 1999 episode. Journal of Exposure Analysis and Environmental Epidemiology, 15, 439–457.

    Article  CAS  Google Scholar 

  • Georgopoulos, P. G., Wang, S. W., Yang, Y. C., McCurdy, T., Özkaynak, H., Xue, J., et al. (2007). Biologically-based modeling of multimedia, multipathway, multiroute population exposures to arsenic. Journal of Exposure Science and Environmental Epidemiology (in press).

  • Georgopoulos, P. G., Wang, S. W., Yang, Y. C., Xue, J., Zartarian, V., McCurdy, T., et al. (2005b). Assessing multimedia/multipathway exposures to arsenic using a mechanistic source-to-dose modeling framework: Case studies employing MENTOR/SHEDS-4M. Prepared for the US Environmental Protection Agency. Technical Report CERM:2005-01. North Carolina: USEPA.

  • Isukapalli, S., Wang, S. W., Ozkaynak, H., & Georgopoulos, P. G. (2005). Source-to-dose modeling of long-term population exposures to reactive and non-reactive air pollutants: Indoor and outdoor contributions. Paper presented at The 15th Annual ISEA Conference, Tucson, AZ, October 30–November 3.

  • Jaques, P. A., & Kim, C. S. (2000). Measurement of total lung deposition of inhaled ultrafine particles in healthy men and women. Inhalation Toxicology, 12, 715–731.

    Article  CAS  Google Scholar 

  • Jarvis, N. S., Birchall, A., James, A. C., Bailey, M. R., & Dorrian, M.-D. (1996). LUDEP 2.0 Personal computer program for calculating internal doses using the ICRP Publication 66 respiratory tract model. Richland, WA: National Radiological Protection Board (NRPB-SR287).

  • NRC (2005). Application of toxicogenomics to cross-species extrapolation. Washington, DC: National Academies.

    Google Scholar 

  • NUREG (2002). Proceedings of the Environmental Software Systems Compatibility and Linkage Workshop. Rockville, MD: US Nuclear Regulatory Commission (NUREG/CP-0177, PNNL-13654).

  • Ouyang, M., Welsh, W. J., & Georgopoulos, P. (2004). Gaussian mixture clustering and imputation of microarray data. Bioinformatics, 20, 917–923.

    Article  CAS  Google Scholar 

  • Price, P. S., & Chaisson, C. F. (2005). A conceptual framework for modeling aggregate and cumulative exposures to chemicals. Journal of Exposure Analysis and Environmental Epidemiology, 15, 473–481.

    Article  CAS  Google Scholar 

  • Price, P. S., Chaisson, C. F., Koontz, M., Wilkes, C., Ryan, B., Macintosh, D., et al. (2003). Construction of a comprehensive chemical exposure framework using person oriented modeling. San Francisco, CA: The Lifeline Group for The Exposure Technical Implementation Panel, American Chemistry Council (Contract Number 1338).

  • Schwartz, D., & Collins, F. (2007). Medicine. Environmental biology and human disease. Science, 316, 695–696.

    Article  CAS  Google Scholar 

  • Slepchenko, B. M., Schaff, J. C., Carson, J. H., & Loew, L. M. (2002). Computational cell biology: Spatiotemporal simulation of cellular events. Annual Review of Biophysics and Biomolecular Structure, 31, 423–441.

    Article  CAS  Google Scholar 

  • Stallings, C., Tippett, J. A., Glen, G., & Smith, L. (2002). CHAD User’s guide: Extracting human activity information from CHAD on the PC. Prepared for USEPA National Exposure Research Laboratory. Dayton, OH: ManTech Environmental Technologies.

  • Stenchikov, G., Lahoti, N., Diner, D. J., Kahn, R., Lioy, P. J., & Georgopoulos, P. G. (2006). Multiscale plume transport from the collapse of the World Trade Center on September 11, 2001. Environmental Fluid Mechanics, 6, 425–450.

    Article  CAS  Google Scholar 

  • Strategy for the EuroPhysiome (STEP) Consortium (2006). First STEP Conference. Available at: http://www.biomedtown.org/biomed_town/STEP/Reception/step-definitions/STEPConference1.

  • Takahashi, K., Ishikawa, N., Sadamoto, Y., Sasamoto, H., Ohta, S., Shiozawa, A., et al. (2003). E-Cell 2: Multi-platform E-Cell simulation system. Bioinformatics, 19, 1727–1729.

    Article  CAS  Google Scholar 

  • The Lifeline Group (2006). Physiological parameters for PBPK modeling version 1.3 (P 3 M). Available at: http://www.thelifelinegroup.org/p3m.

  • Tong, W., Cao, X., Harris, S., Sun, H., Fang, H., Fuscoe, J., et al. (2003). ArrayTrack – supporting toxicogenomic research at the U.S. Food and Drug Administration National Center for Toxicological Research. Environmental Health Perspectives, 111, 1819–1826.

    CAS  Google Scholar 

  • UK Environment Agency (2003). Environmental genomics – An introduction. Bristol, UK: UK Environment Agency.

    Google Scholar 

  • USEPA (2003a). Multimedia, Multipathway, and Multireceptor Risk Assessment (3MRA) modeling system volume I: Modeling system and science. USEPA National Exposure Research Laboratory. Athens, GA and Research Triangle Park, NC: USEPA (EPA530-D-03-001a).

  • USEPA (2003b). A Framework for a computational toxicology research program in ORD. Washington, DC: USEPA Office of Research and Development (EPA/600/R-03/065).

    Google Scholar 

  • USEPA (2004). Potential implications of genomics for regulatory and risk assessment applications at EPA. Washington, DC: US Environmental Protection Agency Science Policy Council (EPA 100/B-04/002).

    Google Scholar 

  • USEPA (2006). Human health research program multi-year plan (FY 2006–2013). Washington, DC: USEPA Office of Research and Development.

    Google Scholar 

  • Wang, S. W., Georgopoulos, P. G., Li, G., & Rabitz, H. (2005a). Characterizing uncertainties in human exposure modeling through the Random Sampling-High Dimensional Model Representation (RS-HDMR) methodology. International Journal of Risk Assessment and Management, 5, 387–406.

    Article  CAS  Google Scholar 

  • Wang, S. W., Isukapalli, S., Sasso, A., Yang, Y. C., Zartarian, V., Xue, J., et al. (2005b). Modeling cumulative and aggregate exposures of co-occurring multimedia contaminants in a probabilistic source-to-dose framework. Paper presented at The 15th Annual ISEA Conference, Tucson, AZ, November.

  • Waters, M., Boorman, G., Bushel, P., Cunningham, M., Irwin, R., Merrick, A., et al. (2003). Systems toxicology and the Chemical Effects in Biological Systems (CEBS) knowledge base. Environmental Health Perspectives, 111, 811–824.

    CAS  Google Scholar 

  • WHO (2005). Harmonization project document no. 3 – Principles of characterizing and applying human exposure models. Geneva, Switzerland: World Health Organization.

    Google Scholar 

Download references

Acknowledgments

Support for this work has been provided primarily by the USEPA-funded Environmental Bioinformatics and Computational Toxicology Center (ebCTC) under STAR Grant No. GAD R 832721-010, and the USEPA funded Center for Exposure and Risk Modeling (CERM) under Cooperative Agreement no. CR-83162501. This work has not been reviewed by and does not represent the opinions of the funding agency. Appreciation is extended to the research team of CCL, with special thanks to Profs S. Isukapalli and S. W. Wang, as well as to A. Sasso, Y. C. Yang, and P. Shade. Thanks are also due to Prof P.J. Lioy (CERM), Prof W. Welsh (ebCTC), Dr W. Tong (USFDA-NCTR Center for Toxicoinformatics), and to the numerous USEPA and EOHSI collaborators who have contributed to this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panos G. Georgopoulos.

Appendix

Appendix

Table 2 A representative subset of databases (with website reference) that are available for providing data for use in MENTOR applications (see http://www.ebKB.org for a more extensive list)
Table 3 A representative subset of databases (with website reference) that are available for providing data for use in DORIAN applications (see http://www.ebKB.org for a more extensive list)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Georgopoulos, P.G. A Multiscale Approach for Assessing the Interactions of Environmental and Biological Systems in a Holistic Health Risk Assessment Framework. Water Air Soil Pollut: Focus 8, 3–21 (2008). https://doi.org/10.1007/s11267-007-9137-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11267-007-9137-7

Keywords

Navigation