Skip to main content
Log in

Construction of an integrated consensus map of the apple genome based on four mapping populations

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

An integrated consensus genetic map for apple was constructed on the basis of segregation data from four genetically connected crosses (C1 = Discovery × TN10-8, C2 = Fiesta × Discovery, C3 = Discovery × Prima, C4 = Durello di Forli × Fiesta) with a total of 676 individuals using CarthaGene® software. First, integrated female–male maps were built for each population using common female–male simple sequence repeat markers (SSRs). Then, common SSRs over populations were used for the consensus map integration. The integrated consensus map consists of 1,046 markers, of which 159 are SSR markers, distributed over 17 linkage groups reflecting the basic chromosome number of apple. The total length of the integrated consensus map was 1,032 cM with a mean distance between adjacent loci of 1.1 cM. Markers were proportionally distributed over the 17 linkage groups (χ 2 = 16.53, df = 16, p = 0.41). A non-uniform marker distribution was observed within all of the linkage groups (LGs). Clustering of markers at the same position (within a 1-cM window) was observed throughout LGs and consisted predominantly of only two to three linked markers. The four integrated female–male maps showed a very good colinearity in marker order for their common markers, except for only two (CH01h01, CH05g03) and three (CH05a02z, NZ02b01, Lap-1) markers on LG17 and LG15, respectively. This integrated consensus map provides a framework for performing quantitative trait locus (QTL) detection in a multi-population design and evaluating the genetic background effect on QTL expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Beavis WD, Grant D (1991) A linkage map based on information from four F2 populations of maize (Zea mays L.). Theor Appl Genet 82(5):636–644

    Article  CAS  Google Scholar 

  • Belfanti E, Silfverberg-Dilworth E, Tartarini S, Patocchi A, Barbieri M, Zhu J, Vinatzer BA, Gianfranceschi L, Gessler C, Sansavini S (2004) The HcrVf2 gene from a wild apple confers scab resistance to a transgenic cultivated variety. Proc Natl Acad Sci U S A 101(3):886–890

    Article  PubMed  CAS  Google Scholar 

  • Black WC (1993) PCR with arbitrary primers: approach with care. Insect Mol Biol 2(1):1–6

    Article  PubMed  CAS  Google Scholar 

  • Blanc G, Charcosset A, Mangin B, Gallais A, Moreau L (2006) Connected populations for detecting quantitative trait loci and testing for epistasis: an application in maize. Theor Appl Genet 113(2):206–224

    Article  PubMed  CAS  Google Scholar 

  • Bus VGM, Rikkerink EHA, Van de Weg WE, Rusholme RL, Gardiner SE, Bassett HCM, Kodde LP, Parisi L, Laurens FND, Meulenbroek EJ, Plummer KM (2005) The Vh2 and Vh4 scab resistance genes in two differential hosts derived from Russian apple R12740-7A map to the same linkage group of apple. Mol Breed 15(1):103–116

    Article  CAS  Google Scholar 

  • Calenge F, Faure A, Goerre M, Gebhardt C, Van de Weg WE, Parisi L, Durel CE (2004) Quantitative trait loci (QTL) analysis reveals both broad-spectrum and isolate-specific QTL for scab resistance in apple progeny challenged with eight isolates of Venturia inaequalis. Phytopathology 94:370–379

    Article  CAS  PubMed  Google Scholar 

  • Causse M, Sansavini S, Damerval C, Maurice A, Charcosset A, Deatrick J, de Vienne D (1996) A composite map of expressed sequences in maize. Genome 39:418–432

    Article  PubMed  CAS  Google Scholar 

  • Cervera MT, Storme V, Ivens B, Gusmao J, Liu BH, Hostyn V, Van Slycken J, Van Montagu M, Boerjan W (2001) Dense genetic linkage maps of three Populus species (Populus deltoides, P. nigra and P. trichocarpa) based on AFLP and microsatellite markers. Genetics 158(2):787–809

    PubMed  CAS  Google Scholar 

  • Cheng FS, Weeden NF, Brown SK (1996) Identification of co-dominant RAPD markers tightly linked to fruit skin color in apple. Theor Appl Genet 93(1):222–227

    Article  CAS  Google Scholar 

  • Chevreau E, Manganaris AG, Gallet M (1999) Isozyme segregation in five apple progenies and potential use for map construction. Theor Appl Genet 98(2):329–336

    Article  CAS  Google Scholar 

  • Conner PJ, Brown SK, Weeden NF (1998) Molecular-marker analysis of quantitative traits for growth and development in juvenile apple trees. Theor Appl Genet 96(8):1027–1035

    Article  CAS  Google Scholar 

  • Costa F, Stella S, Sansavini S, Van de Weg WE (2005) Functional markers as genetic approach to study ethylene production and fruit softening in apple (Malus domestica Borkh.). Acta Hort (ISHS) 682:389–394

    CAS  Google Scholar 

  • Cregan PB, Jarvik T, Bush AL, Shoemaker RC, Lark KG, Kahler AL, Kaya N, VanToai TT, Lohnes DG, Chung J, Specht JE (1999) An integrated genetic linkage map of the soybean genome. Crop Sci 39(5):1464–1490

    Article  CAS  Google Scholar 

  • Daryl JS, Peter I, Keith E (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109(6):1105–1114

    Article  CAS  Google Scholar 

  • Davey MW, Kenis K, Keulemans J (2006) Genetic control of fruit vitamin C contents. Plant Physiol 142(1):343–351

    Article  PubMed  CAS  Google Scholar 

  • de Givry S, Bouchez M, Chabrier P, Milan D, Schiex T (2005) CARTHAGENE: multipopulation integrated genetic and radiation hybrid mapping. Bioinformatics 21(8):1703–1704

    Article  PubMed  CAS  Google Scholar 

  • Dirlewanger E, Graziano E, Joobeur T, Garriga-Caldere F, Cosson P, Howad W, Arus P (2004) Comparative mapping and marker-assisted selection in Rosaceae fruit crops. Proc Natl Acad Sci U S A 101(26):9891–9896

    Article  PubMed  CAS  Google Scholar 

  • Doligez A, Adam-Blondon AF, Cipriani G, Di Gaspero G, Laucou V, Merdinoglu D, Meredith CP, Riaz S, Roux C, This P (2006) An integrated SSR map of grapevine based on five mapping populations. Theor Appl Genet 113(3):369–382

    Article  PubMed  CAS  Google Scholar 

  • Durel CE, Parisi L, Laurens F, Van de Weg WE, Liebhard R, Jourjon MF (2003) Genetic dissection of partial resistance to race 6 of Venturia inaequalis in apple. Genome 46(2):224–234

    Article  PubMed  CAS  Google Scholar 

  • Fatmi A, Poneleit CG, Pfeiffer TW (1993) Variability of recombination frequencies in the Iowa Stiff Stalk Synthetic (Zea mays L.). Theor Appl Genet 86(7):859–866

    Article  Google Scholar 

  • Fernandez-Fernandez F, Evans KM, Clarke JB, Govan CL, James CM, Maric S, Tobutt KR (2008) Development of an STS map of an interspecific progeny of Malus. Tree Genet Gen. DOI 10.1007/s11295-007-0124-y

  • Gardiner SE, Bassett HCM, Noiton DAM, Bus VG, Hofstee ME, White AG, Ball RD, Forster RLS, Rikkerink EHA (1996) A detailed linkage map around an apple scab resistance gene demonstrates that two disease resistance classes both carry the Vf gene. Theor Appl Genet 93(4):485–493

    Article  CAS  Google Scholar 

  • Gentzbittel L, Mestries E, Mouzeyar S, Mazeyrat F, Badaoui S, Vear F, Tourvieille de Labrouhe D, Nicolas P (1999) A composite map of expressed sequences and phenotypic traits of the sunflower (Helianthus annuus L.) genome. Theor Appl Genet 99(1):218–234

    Article  CAS  Google Scholar 

  • Gianfranceschi L, Koller B, Seglias N, Kellerhals M, Gessler C (1996) Molecular selection in apple for resistance to scab caused by Venturia inaequalis. Theor Appl Genet 93(1):199–204

    Article  CAS  Google Scholar 

  • Grattapaglia D, Sederoff R (1994) Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers. Genetics 137(4):1121–1137

    PubMed  CAS  Google Scholar 

  • Gygax M, Gianfranceschi L, Liebhard R, Kellerhals M, Gessler C, Patocchi A (2004) Molecular markers linked to the apple scab resistance gene Vbj derived from Malus baccata jackii. Theor Appl Genet 109(8):1702–1709

    Article  PubMed  CAS  Google Scholar 

  • Hemmat M, Weeden NF, Manganaris AG, Lawson DM (1994) Molecular marker linkage map for apple. J Hered 85(1):4–11

    PubMed  CAS  Google Scholar 

  • Hemmat M, Brown SK, Aldwinckle HS, Mehlenbacher SA, Weeden NF (2003) Identification and mapping of markers for resistance to apple scab from ‘Antonovka’ and ‘Hansen's baccata #2’¢. Acta Hort 622:153–161

    CAS  Google Scholar 

  • Kenis K, Keulemans J (2007) Study of tree architecture of apple (Malus domestica Borkh.) by QTL analysis of growth traits. Molecular Breeding 19(3):193–208

    Article  CAS  Google Scholar 

  • King GJ, Maliepaard C, Lynn JR, Alston FH, Durel CE, Evans KM, Griffon B, Laurens F, Manganaris AG, Schrevens E, Tartarini S, Verhaegh J (2000) Quantitative genetic analysis and comparison of physical and sensory descriptors relating to fruit flesh firmness in apple (Malus pumila Mill.). Theor Appl Genet 100(7):1074–1084

    Article  Google Scholar 

  • Kosambi DD (1944) The estimation of map distance from recombination values. Ann Eug 12:172–175

    Google Scholar 

  • Leister D, Ballvora A, Salamini F, Gebhardt C (1996) A PCR-based approach for isolating pathogen resistance genes from potato with potential for wide application in plants. Nat Genet 14(4):421–429

    Article  PubMed  CAS  Google Scholar 

  • Lenormand T, Dutheil J (2005) Recombination difference between sexes: a role for haploid selection. PLoS Biology 3(3):e63

    Article  PubMed  CAS  Google Scholar 

  • Lespinasse Y, Durel CE, Parisi L, Laurens F, Chevalier M, Pinet C (2000a) A European project D.A.R.E.—Durable resistance of apple to scab and powdery-mildew. Acta Hort 538:197–200

    Google Scholar 

  • Lespinasse D, Rodier-Goud M, Grivet L, Leconte A, Legnate H, Seguin M (2000b) A saturated genetic linkage map of rubber tree (Hevea spp.) based on RFLP, AFLP, microsatellite, and isozyme markers. Theor Appl Genet 100(1):127–138

    Article  CAS  Google Scholar 

  • Li R, Lyons MA, Wittenburg H, Paigen B, Churchill GA (2005) Combining data from multiple inbred line crosses improves the power and resolution of quantitative trait loci mapping. Genetics 169(3):1699–1709

    Article  PubMed  CAS  Google Scholar 

  • Liebhard R, Gianfranceschi L, Koller B, Ryder CD, Tarchini R, Van De Weg WE, Gessler C (2002) Development and characterisation of 140 new microsatellites in apple (Malus domestica Borkh.). Molecular Breeding 10(4):217–241

    Article  CAS  Google Scholar 

  • Liebhard R, Koller B, Gianfranceschi L, Gessler C (2003a) Creating a saturated reference map for the apple (Malus domestica Borkh.) genome. Theor Appl Genet 106(8):1497–1508

    PubMed  CAS  Google Scholar 

  • Liebhard R, Koller B, Patocchi A, Kellerhals M, Pfammatter W, Jermini M, Gessler C (2003b) Mapping quantitative field resistance against apple scab in a ‘Fiesta’ ‘Discovery’ progeny. Phytopathology 93:493–501

    Article  CAS  PubMed  Google Scholar 

  • Lombard V, Delourme R (2001) A consensus linkage map for rapeseed (Brassica napus L.): construction and integration of three individual maps from DH populations. Theor Appl Genet 103:491–507

    Article  CAS  Google Scholar 

  • Loridon K, McPhee K, Morin J, Dubreuil P, Pilet-Nayel M, Aubert G, Rameau C, Baranger A, Coyne C, Lejeune-Hènaut I, Burstin J (2005) Microsatellite marker polymorphism and mapping in pea (Pisum sativum L.). Theor Appl Genet 111(6):1022–1031

    Article  PubMed  CAS  Google Scholar 

  • Maliepaard C, Jansen J, Van Ooijen JW (1997) Linkage analysis in a full-sib family of an outbreeding plant species: overview and consequences for applications. Genet Res 70:237–250

    Article  Google Scholar 

  • Maliepaard C, Alston FH, Van Arkel G, Brown LM, Chevreau E, Dunemann F, Evans KM, Gardiner S, Guilford P, van Heusden AW, Janse J, Laurens F, Lynn JR, Manganaris AG, Den Nijs APM, Periam N, Rikkerink E, Roche P, Ryder C, Sansavini S, Schmidt H, Tartarini S, Verhaegh JJ, Vrielink-Van Ginkel M, King GJ (1998) Aligning male and female linkage maps of apple (Malus pumila Mill.) using multi-allelic markers. Theor Appl Genet 97:60–73

    Article  CAS  Google Scholar 

  • Myburg AA, Remington DM, O’Malley DM, Sederoff RR, Whetten RW (2001) High-throughput AFLP analysis using infrared dye-labeled primers and an automated DNA sequencer. BioTechniques 30(2):348–357

    PubMed  CAS  Google Scholar 

  • Nicolas SD, Mignon GL, Eber F, Coriton O, Monod H, Clouet V, Huteau V, Lostanlen A, Delourme R, Chalhoub B, Ryder CD, Chevre AM, Jenczewski E (2007) Homologous recombination plays a major role in chromosome rearrangements that occur during meiosis of Brassica napus Haploids. Genetics 175(2):487–503

    Article  PubMed  CAS  Google Scholar 

  • Pan Q, Liu Y-S, Budai-Hadrian O, Sela M, Carmel-Goren L, Zamir D, Fluhr R (2000) Comparative genetics of nucleotide binding site-leucine rich repeat resistance gene homologues in the genomes of two dicotyledons: tomato and Arabidopsis. Genetics 155(1):309–322

    PubMed  CAS  Google Scholar 

  • Pelgas B, Beauseigle S, Acheré V, Jeandroz S, Bousquet J, Isabel N (2006) Comparative genome mapping among Picea glauca, P. mariana × P. rubens and P. abies, and correspondence with other Pinaceae. Theor Appl Genet 113(8):1371–1393

    Article  PubMed  CAS  Google Scholar 

  • Radhika P, Gowda S, Kadoo N, Mhase L, Jamadagni B, Sainani M, Chandra S, Gupta V (2007) Development of an integrated intraspecific map of chickpea (Cicer arietinum L.) using two recombinant inbred line populations. Theor Appl Genet 115(2):209–216

    Article  PubMed  CAS  Google Scholar 

  • Rebai A, Goffinet B (1993) Power of tests for QTL detection using replicated progenies derived from a diallel cross. Theor Appl Genet 86:1014–1022

    Article  Google Scholar 

  • Roche P, Alston FH, Maliepaard C, Evans KM, Vrielink R, Dunemann F, Markussen T, Tartarini S, Brown LM, Ryder C, King GJ (1997) RFLP and RAPD markers linked to the rosy leaf curling aphid resistance gene (Sd1) in apple. Theor Appl Genet 94(3):528–533

    Article  CAS  Google Scholar 

  • Saha MC, Mian R, Zwonitzer JC, Chekhovskiy K, Hopkins AA (2005) An SSR- and AFLP-based genetic linkage map of tall fescue (Festuca arundinacea Schreb.). Theor Appl Genet 110(2):323–336

    Article  PubMed  CAS  Google Scholar 

  • Segura V, Denance C, Durel CE, Costes E (2007) Wide range QTL analysis for complex architectural traits in a 1-year-old apple progeny. Genome 50:159–171

    Article  PubMed  CAS  Google Scholar 

  • Sewell MM, Sherman BK, Neale DB (1999) A consensus map for loblolly pine (Pinus taeda L.). I. Construction and integration of individual linkage maps from two outbred three-generation pedigrees. Genetics 151(1):321–330

    PubMed  CAS  Google Scholar 

  • Silfverberg-Dilworth E, Matasci C, Van de Weg WE, Van Kaauwen M, Walser M, Kodde L, Soglio V, Gianfranceschi L, Durel CE, Costa F, Yamamoto T, Koller B, Gessler C, Patocchi A (2006) Microsatellite markers spanning the apple (Malus domestica Borkh.) genome. Tree Genetics & Genomes 2(4):202–224

    Article  Google Scholar 

  • Song Q, Marek L, Shoemaker R, Lark K, Concibido V, Delannay X, Specht J, Cregan P (2004) A new integrated genetic linkage map of the soybean. Theor Appl Genet 109(1):122–128

    Article  PubMed  CAS  Google Scholar 

  • Symonds VV, Godoy AV, Alconada T, Botto JF, Juenger TE, Casal JJ, Lloyd AM (2005) Mapping quantitative trait loci in multiple populations of Arabidopsis thaliana identifies natural allelic variation for trichome density. Genetics 169(3):1649–1658

    Article  PubMed  CAS  Google Scholar 

  • Tanksley SD, Ganal MW, Prince JP, de Vicente MC, Bonierbale MW, Broun P, Fulton TM, Giovannoni JJ, Grandillo S, Martin GB et al (1992) High density molecular linkage maps of the tomato and potato genomes. Genetics 132(4):1141–1160

    PubMed  CAS  Google Scholar 

  • Thiermann M (2002) Molekulare charakterisierung dauerhafter, polygen vererbter resistenzquellen für apfelschorf und apfelmehltau, Dissertation Univ. Bremen.

  • Truco M, Antonise R, Lavelle D, Ochoa O, Kozik A, Witsenboer H, Fort S, Jeuken M, Kesseli R, Lindhout P, Michelmore R, Peleman J (2007) A high-density, integrated genetic linkage map of lettuce (Lactuca spp.). Theor Appl Genet 115(6):735–746

    Article  PubMed  CAS  Google Scholar 

  • Vinatzer BA, Patocchi A, Gianfranceschi L, Tartarini S, Zhang HB, Gessler C, Sansavini S (2001) Apple contains receptor-like genes homologous to the Cladosporium fulvum resistance gene family of tomato with a cluster of genes cosegragating with Vf apple scab resistance. Mol Plant-Microbe Interactions 14:508–514

    Article  CAS  Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93(1):77–78

    Article  PubMed  CAS  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, Lee Tvd, Hornes M, Friters A, Pot J, Paleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucl Acids Res 23(21):4407–4414

    Article  PubMed  CAS  Google Scholar 

  • Walling GA, Visscher PM, Andersson L, Rothschild MF, Wang L, Moser G, Groenen MAM, Bidanel J-P, Cepica S, Archibald AL, Geldermann H, de Koning DJ, Milan D, Haley CS (2000) Combined analyses of data from quantitative trait loci mapping studies: chromosome 4 effects on porcine growth and fatness. Genetics 155(3):1369–1378

    PubMed  CAS  Google Scholar 

  • Waugh R, Bonar N, Baird E, Thomas B, Graner A, Hayes P, Powell W (1997) Homology of AFLP products in three mapping populations of barley. Mol Gen Genet MGG 255(3):311–321

    Article  CAS  Google Scholar 

  • Xu M, Korban SS (2002) A cluster of four receptor-like genes resides in the Vf locus that confers resistance to apple scab disease. Genetics 162(4):1995–2006

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This publication was partly carried out with the financial support from the Commission of the European Communities (European project “HiDRAS”: High-quality Disease Resistant Apples for a Sustainable agriculture; contract no. QLK5-CT-2002-01492), Directorate-General Research—Quality of Life and Management of Living Resources Programme. It does not necessarily reflect the Commission's views and in no way anticipates its future policy in this area. Its content is the sole responsibility of the publishers. The authors want to acknowledge E. Chevreau and M. Gallet (deceased) of INRA, France and S. Manganaris of NAGREF, Greece for providing the isozyme marker data. They also want to acknowledge technical assistance of A. Faure and L. Dondini.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. E. Durel.

Additional information

Communicated by D. Grattapaglia

Rights and permissions

Reprints and permissions

About this article

Cite this article

N’Diaye, A., Van de Weg, W.E., Kodde, L.P. et al. Construction of an integrated consensus map of the apple genome based on four mapping populations. Tree Genetics & Genomes 4, 727–743 (2008). https://doi.org/10.1007/s11295-008-0146-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-008-0146-0

Keywords

Navigation