Skip to main content

Advertisement

Log in

Human brain endothelial cells are responsive to adenosine receptor activation

  • Brief Communication
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

The blood–brain barrier (BBB) of the central nervous system (CNS) consists of a unique subset of endothelial cells that possess tight junctions which form a relatively impervious physical barrier to a large variety of blood components. Until recently, there have been no good in vitro models for studying the human BBB without the co-culture of feeder cells. The hCMEC/D3 cell line is the first stable, well-differentiated human brain endothelial cell line that grows independently in culture with characteristics that closely resemble those of resident human brain endothelial cells. As our previously published findings demonstrated the importance of adenosine receptor (AR) signaling for lymphocyte entry into the CNS, we wanted to determine if human brain endothelial cells possess the capacity to generate and respond to extracellular adenosine. Utilizing the hCMEC/D3 cell line, we determined that these cells express CD73, the cell surface enzyme that converts extracellular AMP to adenosine. When grown under normal conditions, these cells also express the A1, A2A, and A2B AR subtypes. Additionally, hCMEC/D3 cells are responsive to extracellular AR signaling, as cAMP levels increase following the addition of the broad spectrum AR agonist 5′-N-ethylcarboxamidoadenosine (NECA). Overall, these results indicate that human brain endothelial cells, and most likely the human BBB, have the capacity to synthesize and respond to extracellular adenosine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Stolp HB, Dziegielewska KM (2009) Review: role of developmental inflammation and blood–brain barrier dysfunction in neurodevelopmental and neurodegenerative diseases. Neuropathol Appl Neurobiol 35(2):132–146

    Article  PubMed  CAS  Google Scholar 

  2. Lossinsky AS, Shivers RR (2004) Structural pathways for macromolecular and cellular transport across the blood–brain barrier during inflammatory conditions. Review Histol histopathology 19(2):535–564

    CAS  Google Scholar 

  3. Ballabh P, Braun A, Nedergaard M (2004) The blood–brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis 16(1):1–13

    Article  PubMed  CAS  Google Scholar 

  4. Pottiez G, Flahaut C, Cecchelli R, Karamanos Y (2009) Understanding the blood–brain barrier using gene and protein expression profiling technologies. Brain Res Rev 62(1):83–98

    Article  PubMed  CAS  Google Scholar 

  5. Kniesel U, Wolburg H (2000) Tight junctions of the blood–brain barrier. Cell Mol Neurobiol 20(1):57–76

    Article  PubMed  CAS  Google Scholar 

  6. Drewes LR (2001) Molecular architecture of the brain microvasculature: perspective on blood–brain transport. J Mol Neurosci 16(2–3):93–98, discussion 151–157

    Article  PubMed  CAS  Google Scholar 

  7. Deli MA, Abraham CS, Kataoka Y, Niwa M (2005) Permeability studies on in vitro blood–brain barrier models: physiology, pathology, and pharmacology. Cell Mol Neurobiol 25(1):59–127

    Article  PubMed  Google Scholar 

  8. Banks WA (1999) Physiology and pathology of the blood–brain barrier: implications for microbial pathogenesis, drug delivery and neurodegenerative disorders. J Neurovirol 5(6):538–555

    Article  PubMed  CAS  Google Scholar 

  9. Foley LM, Hitchens TK, Ho C, Janesko-Feldman KL, Melick JA, Bayir H, Kochanek PM (2009) Magnetic resonance imaging assessment of macrophage accumulation in mouse brain after experimental traumatic brain injury. J Neurotrauma 26(9):1509–1519

    Article  PubMed  Google Scholar 

  10. Glod J, Kobiler D, Noel M, Koneru R, Lehrer S, Medina D, Maric D, Fine HA (2006) Monocytes form a vascular barrier and participate in vessel repair after brain injury. Blood 107(3):940–946

    Article  PubMed  CAS  Google Scholar 

  11. Fitch MT, Silver J (1997) Activated macrophages and the blood–brain barrier: inflammation after CNS injury leads to increases in putative inhibitory molecules. Exp Neurol 148(2):587–603

    Article  PubMed  CAS  Google Scholar 

  12. Berkenbosch F (1992) Macrophages and astroglial interactions in repair to brain injury. Ann NY Acad Sci 650:186–190

    Article  PubMed  CAS  Google Scholar 

  13. Buckner CM, Luers AJ, Calderon TM, Eugenin EA, Berman JW (2006) Neuroimmunity and the blood–brain barrier: molecular regulation of leukocyte transmigration and viral entry into the nervous system with a focus on neuroAIDS. J Neuroimmune Pharmacol 1(2):160–181

    Article  PubMed  Google Scholar 

  14. Irani DN, Griffin DE (1996) Regulation of lymphocyte homing into the brain during viral encephalitis at various stages of infection. J Immunol 156(10):3850–3857

    PubMed  CAS  Google Scholar 

  15. Fabis MJ, Phares TW, Kean RB, Koprowski H, Hooper DC (2008) Blood–brain barrier changes and cell invasion differ between therapeutic immune clearance of neurotrophic virus and CNS autoimmunity. Proc Natl Acad Sci USA 105(40):15511–15516

    Article  PubMed  CAS  Google Scholar 

  16. Cook SP, McCleskey EW (2002) Cell damage excites nociceptors through release of cytosolic ATP. Pain 95(1–2):41–47

    Article  PubMed  CAS  Google Scholar 

  17. Motte S, Communi D, Pirotton S, Boeynaems JM (1995) Involvement of multiple receptors in the actions of extracellular ATP: the example of vascular endothelial cells. Int J Biochem Cell Biol 27(1):1–7

    Article  PubMed  CAS  Google Scholar 

  18. Deaglio S, Dwyer KM, Gao W, Friedman D, Usheva A, Erat A, Chen JF, Enjyoji K, Linden J, Oukka M, Kuchroo VK, Strom TB, Robson SC (2007) Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J Exp Med 204(6):1257–1265

    Article  PubMed  CAS  Google Scholar 

  19. Fredholm BB, IJ AP, Jacobson KA, Klotz KN, Linden J (2001) International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev 53(4):527–552

    PubMed  CAS  Google Scholar 

  20. Hoskin DW, Mader JS, Furlong SJ, Conrad DM, Blay J (2008) Inhibition of T cell and natural killer cell function by adenosine and its contribution to immune evasion by tumor cells (Review). Int J Oncol 32(3):527–535

    PubMed  CAS  Google Scholar 

  21. Naganuma M, Wiznerowicz EB, Lappas CM, Linden J, Worthington MT, Ernst PB (2006) Cutting edge: critical role for A2A adenosine receptors in the T cell-mediated regulation of colitis. J Immunol 177(5):2765–2769

    PubMed  CAS  Google Scholar 

  22. Weksler BB, Subileau EA, Perriere N, Charneau P, Holloway K, Leveque M, Tricoire-Leignel H, Nicotra A, Bourdoulous S, Turowski P, Male DK, Roux F, Greenwood J, Romero IA, Couraud PO (2005) Blood–brain barrier-specific properties of a human adult brain endothelial cell line. FASEB J 19(13):1872–1874

    PubMed  CAS  Google Scholar 

  23. Bahbouhi B, Berthelot L, Pettre S, Michel L, Wiertlewski S, Weksler B, Romero IA, Miller F, Couraud PO, Brouard S, Laplaud DA, Soulillou JP (2009) Peripheral blood CD4+ T lymphocytes from multiple sclerosis patients are characterized by higher PSGL-1 expression and transmigration capacity across a human blood–brain barrier-derived endothelial cell line. J Leukoc Biol 86(5):1049–1063

    Article  PubMed  CAS  Google Scholar 

  24. Forster C, Burek M, Romero IA, Weksler B, Couraud PO, Drenckhahn D (2008) Differential effects of hydrocortisone and TNFalpha on tight junction proteins in an in vitro model of the human blood–brain barrier. J Physiol 586(7):1937–1949

    Article  PubMed  Google Scholar 

  25. Hurst LA, Bunning RA, Couraud PO, Romero IA, Weksler BB, Sharrack B, Woodroofe MN (2009) Expression of ADAM-17, TIMP-3 and fractalkine in the human adult brain endothelial cell line, hCMEC/D3, following pro-inflammatory cytokine treatment. J Neuroimmunol 210(1–2):108–112

    Article  PubMed  CAS  Google Scholar 

  26. Joice SL, Mydeen F, Couraud PO, Weksler BB, Romero IA, Fraser PA, Easton AS (2009) Modulation of blood–brain barrier permeability by neutrophils: in vitro and in vivo studies. Brain Res 1298:13–23

    Article  PubMed  CAS  Google Scholar 

  27. Male DK (2009) Expression and induction of p-glycoprotein-1 on cultured human brain endothelium. J Cereb Blood Flow Metab 29(11):1760–1763

    Article  PubMed  CAS  Google Scholar 

  28. Poller B, Gutmann H, Krahenbuhl S, Weksler B, Romero I, Couraud PO, Tuffin G, Drewe J, Huwyler J (2008) The human brain endothelial cell line hCMEC/D3 as a human blood–brain barrier model for drug transport studies. J Neurochem 107(5):1358–1368

    Article  PubMed  CAS  Google Scholar 

  29. Vu K, Weksler B, Romero I, Couraud PO, Gelli A (2009) Immortalized human brain endothelial cell line HCMEC/D3 as a model of the blood–brain barrier facilitates in vitro studies of central nervous system infection by Cryptococcus neoformans. Eukaryot Cell 8(11):1803–1807

    Article  PubMed  CAS  Google Scholar 

  30. Mills JH, Thompson LF, Mueller C, Waickman AT, Jalkanen S, Niemela J, Airas L, Bynoe MS (2008) CD73 is required for efficient entry of lymphocytes into the central nervous system during experimental autoimmune encephalomyelitis. Proc Natl Acad Sci USA 105(27):9325–9330

    Article  PubMed  CAS  Google Scholar 

  31. Ravid K, Smith-Mungo LI, Zhao Z, Thomas KM, Kagan HM (1999) Upregulation of lysyl oxidase in vascular smooth muscle cells by cAMP: role for adenosine receptor activation. J Cell Biochem 75(1):177–185

    Article  PubMed  CAS  Google Scholar 

  32. Kalaria RN (1999) The blood–brain barrier and cerebrovascular pathology in Alzheimer’s disease. Ann NY Acad Sci 893:113–125

    Article  PubMed  CAS  Google Scholar 

  33. Kalaria RN (1992) The blood–brain barrier and cerebral microcirculation in Alzheimer disease. Cerebrovasc Brain Metab Rev 4(3):226–260

    PubMed  CAS  Google Scholar 

  34. Kortekaas R, Leenders KL, van Oostrom JC, Vaalburg W, Bart J, Willemsen AT, Hendrikse NH (2005) Blood–brain barrier dysfunction in parkinsonian midbrain in vivo. Ann Neurol 57(2):176–179

    Article  PubMed  CAS  Google Scholar 

  35. Weiss N, Miller F, Cazaubon S, Couraud PO (2009) The blood–brain barrier in brain homeostasis and neurological diseases. Biochim Biophys Acta 1788(4):842–857

    Article  PubMed  CAS  Google Scholar 

  36. Correale J, Villa A (2007) The blood–brain-barrier in multiple sclerosis: functional roles and therapeutic targeting. Autoimmunity 40(2):148–160

    Article  PubMed  CAS  Google Scholar 

  37. van Horssen J, Brink BP, de Vries HE, van der Valk P, Bo L (2007) The blood–brain barrier in cortical multiple sclerosis lesions. J Neuropathol Exp Neurol 66(4):321–328

    Article  PubMed  Google Scholar 

  38. Chen X, Gawryluk JW, Wagener JF, Ghribi O, Geiger JD (2008) Caffeine blocks disruption of blood brain barrier in a rabbit model of Alzheimer’s disease. J Neuroinflammation 5:12

    Article  PubMed  Google Scholar 

  39. Chen X, Ghribi O, Geiger JD Caffeine protects against disruptions of the blood–brain barrier in animal models of Alzheimer’s and Parkinson’s diseases. J Alzheimers Dis 20 Suppl 1:S127–141

  40. Tsutsui S, Schnermann J, Noorbakhsh F, Henry S, Yong VW, Winston BW, Warren K, Power C (2004) A1 adenosine receptor upregulation and activation attenuates neuroinflammation and demyelination in a model of multiple sclerosis. J Neurosci 24(6):1521–1529

    Article  PubMed  CAS  Google Scholar 

  41. Chen GQ, Chen YY, Wang XS, Wu SZ, Yang HM, Xu HQ, He JC, Wang XT, Chen JF, Zheng RY Chronic caffeine treatment attenuates experimental autoimmune encephalomyelitis induced by guinea pig spinal cord homogenates in Wistar rats. Brain research 1309:116–125

  42. Chen X, Lan X, Roche I, Liu R, Geiger JD (2008) Caffeine protects against MPTP-induced blood–brain barrier dysfunction in mouse striatum. J Neurochem 107(4):1147–1157

    PubMed  CAS  Google Scholar 

  43. Feoktistov I, Goldstein AE, Ryzhov S, Zeng D, Belardinelli L, Voyno-Yasenetskaya T, Biaggioni I (2002) Differential expression of adenosine receptors in human endothelial cells: role of A2B receptors in angiogenic factor regulation. Circ Res 90(5):531–538

    Article  PubMed  CAS  Google Scholar 

  44. Merighi S, Benini A, Mirandola P, Gessi S, Varani K, Leung E, MacLennan S, Baraldi PG, Borea PA (2005) A3 adenosine receptors modulate hypoxia-inducible factor-1alpha expression in human A375 melanoma cells. Neoplasia (NY NY) 7(10):894–903

    Article  CAS  Google Scholar 

  45. Merighi S, Benini A, Mirandola P, Gessi S, Varani K, Leung E, Maclennan S, Borea PA (2006) Adenosine modulates vascular endothelial growth factor expression via hypoxia-inducible factor-1 in human glioblastoma cells. Biochem Pharmacol 72(1):19–31

    Article  PubMed  CAS  Google Scholar 

  46. Gessi S, Merighi S, Varani K, Cattabriga E, Benini A, Mirandola P, Leung E, Mac Lennan S, Feo C, Baraldi S, Borea PA (2007) Adenosine receptors in colon carcinoma tissues and colon tumoral cell lines: focus on the A(3) adenosine subtype. J Cell Physiol 211(3):826–836

    Article  PubMed  CAS  Google Scholar 

  47. Quarta D, Ferre S, Solinas M, You ZB, Hockemeyer J, Popoli P, Goldberg SR (2004) Opposite modulatory roles for adenosine A1 and A2A receptors on glutamate and dopamine release in the shell of the nucleus accumbens. Effects of chronic caffeine exposure. J Neurochem 88(5):1151–1158

    Article  PubMed  CAS  Google Scholar 

  48. Ciruela F, Casado V, Rodrigues RJ, Lujan R, Burgueno J, Canals M, Borycz J, Rebola N, Goldberg SR, Mallol J, Cortes A, Canela EI, Lopez-Gimenez JF, Milligan G, Lluis C, Cunha RA, Ferre S, Franco R (2006) Presynaptic control of striatal glutamatergic neurotransmission by adenosine A1-A2A receptor heteromers. J Neurosci 26(7):2080–2087

    Article  PubMed  CAS  Google Scholar 

  49. Schaddelee MP, Voorwinden HL, van Tilburg EW, Pateman TJ, Ijzerman AP, Danhof M, de Boer AG (2003) Functional role of adenosine receptor subtypes in the regulation of blood–brain barrier permeability: possible implications for the design of synthetic adenosine derivatives. Eur J Pharm Sci 19(1):13–22

    Article  PubMed  CAS  Google Scholar 

  50. Alaminos M, Gonzalez-Andrades M, Munoz-Avila JI, Garzon I, Sanchez-Quevedo MC, Campos A (2008) Volumetric and ionic regulation during the in vitro development of a corneal endothelial barrier. Exp Eye Res 86(5):758–769

    Article  PubMed  CAS  Google Scholar 

  51. Fredholm BB (2007) Adenosine, an endogenous distress signal, modulates tissue damage and repair. Cell Death Differ 14(7):1315–1323

    Article  PubMed  CAS  Google Scholar 

  52. Nie Z, Mei Y, Ford M, Rybak L, Marcuzzi A, Ren H, Stiles GL, Ramkumar V (1998) Oxidative stress increases A1 adenosine receptor expression by activating nuclear factor kappa B. Mol Pharmacol 53(4):663–669

    PubMed  CAS  Google Scholar 

  53. Schlotzer-Schrehardt U, Zenkel M, Decking U, Haubs D, Kruse FE, Junemann A, Coca-Prados M, Naumann GO (2005) Selective upregulation of the A3 adenosine receptor in eyes with pseudoexfoliation syndrome and glaucoma. Investig Ophthalmol Vis Sci 46(6):2023–2034

    Article  Google Scholar 

  54. Kong T, Westerman KA, Faigle M, Eltzschig HK, Colgan SP (2006) HIF-dependent induction of adenosine A2B receptor in hypoxia. FASEB J 20(13):2242–2250

    Article  PubMed  CAS  Google Scholar 

  55. Morello S, Ito K, Yamamura S, Lee KY, Jazrawi E, Desouza P, Barnes P, Cicala C, Adcock IM (2006) IL-1 beta and TNF-alpha regulation of the adenosine receptor (A2A) expression: differential requirement for NF-kappa B binding to the proximal promoter. J Immunol 177(10):7173–7183

    PubMed  CAS  Google Scholar 

  56. Kolachala V, Asamoah V, Wang L, Obertone TS, Ziegler TR, Merlin D, Sitaraman SV (2005) TNF-alpha upregulates adenosine 2b (A2b) receptor expression and signaling in intestinal epithelial cells: a basis for A2bR overexpression in colitis. Cell Mol Life Sci 62(22):2647–2657

    Article  PubMed  CAS  Google Scholar 

  57. Redzic ZB, Biringer J, Barnes K, Baldwin SA, Al-Sarraf H, Nicola PA, Young JD, Cass CE, Barrand MA, Hladky SB (2005) Polarized distribution of nucleoside transporters in rat brain endothelial and choroid plexus epithelial cells. J Neurochem 94(5):1420–1426

    Article  PubMed  CAS  Google Scholar 

  58. Mistry G, Drummond GI (1986) Adenosine metabolism in microvessels from heart and brain. J Mol Cell Cardiol 18(1):13–22

    Article  PubMed  CAS  Google Scholar 

  59. Smith TM, Kirley TL (1998) Cloning, sequencing, and expression of a human brain ecto-apyrase related to both the ecto-ATPases and CD39 ecto-apyrases1. Biochim Biophys Acta 1386(1):65–78

    Article  PubMed  CAS  Google Scholar 

  60. Wang TF, Guidotti G (1998) Widespread expression of ecto-apyrase (CD39) in the central nervous system. Brain Res 790(1–2):318–322

    Article  PubMed  CAS  Google Scholar 

  61. Pinsky DJ, Broekman MJ, Peschon JJ, Stocking KL, Fujita T, Ramasamy R, Connolly ES Jr, Huang J, Kiss S, Zhang Y, Choudhri TF, McTaggart RA, Liao H, Drosopoulos JH, Price VL, Marcus AJ, Maliszewski CR (2002) Elucidation of the thromboregulatory role of CD39/ectoapyrase in the ischemic brain. J Clin Investig 109(8):1031–1040

    PubMed  CAS  Google Scholar 

  62. Wink MR, Braganhol E, Tamajusuku AS, Lenz G, Zerbini LF, Libermann TA, Sevigny J, Battastini AM, Robson SC (2006) Nucleoside triphosphate diphosphohydrolase-2 (NTPDase2/CD39L1) is the dominant ectonucleotidase expressed by rat astrocytes. Neuroscience 138(2):421–432

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank the lab of Dr. Eric Denkers and Delbert Abi Abdallah for their expertise in immunoblotting. This work was supported by National Institutes of Health grant: R01 NS063011 (to M.S.B.). Dr. Jeffrey H. Mills holds a Postdoctoral Fellowship from the National Institute of Neurological Disorders and Stroke.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margaret S. Bynoe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mills, J.H., Alabanza, L., Weksler, B.B. et al. Human brain endothelial cells are responsive to adenosine receptor activation. Purinergic Signalling 7, 265–273 (2011). https://doi.org/10.1007/s11302-011-9222-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-011-9222-2

Keywords

Navigation