Skip to main content

Advertisement

Log in

A direct cell quenching method for cell-culture based metabolomics

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

A crucial step in metabolomic analysis of cellular extracts is the cell quenching process. The conventional method first uses trypsin to detach cells from their growth surface. This inevitably changes the profile of cellular metabolites since the detachment of cells from the extracellular matrix alters their physiology. This conventional method also includes time consuming wash/centrifuge steps after trypsinization, but prior to quenching cell activity. During this time, a considerable portion of intracellular metabolites are lost, rendering the conventional method less than ideal for application to metabolomics. We report here a novel sample preparation method for metabolomics applications using adherent mammalian cells, which eliminates the time consumption and physiological stress of the trypsinization and wash/centrifuge steps. This new method was evaluated in the study of metabolic changes caused by 17α-ethynylestradiol (EE2) in estrogen receptor (ER)-positive MCF-7 and ER-negative MDA-MB-231 human breast cancer cell lines using NMR spectroscopy. The results demonstrated that our direct cell quenching method is rapid, effective, and exhibits greater metabolite retention, providing an increase of approximately a factor of 50 compared to the conventional method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bax, A., & Davis, D. G. (1985). MLEV-17-based two-dimensional homonuclear magnetization transfer spectroscopy. Journal of Magnetic Resonance (San Diego, Calif), 65, 355–360.

    Article  CAS  Google Scholar 

  • Bax, A., Griffey, R. H., & Hawkins, B. L. (1983). Correlation of proton and nitrogen-15 chemical shifts by multiple quantum NMR. Journal of Magnetic Resonance (San Diego, Calif), 55, 301–315.

    Article  CAS  Google Scholar 

  • Bax, A., & Summers, M. F. (1986). Proton and carbon-13 assignments from sensitivity-enhanced detection of heteronuclear multiple-bond connectivity by 2D multiple quantum NMR. Journal of the American Chemical Society, 108, 2093–2094. doi:10.1021/ja00268a061.

    Article  CAS  Google Scholar 

  • Beloueche-Babari, M., Jackson, L. E., Al-Saffar, N. M. S., et al. (2006). Identification of magnetic resonance detectable metabolic changes associated with inhibition of phosphoinositide 3-kinase signaling in human breast cancer cells. Molecular Cancer Therapeutics, 5, 187–196. doi:10.1158/1535-7163.MCT-03-0220.

    Article  PubMed  CAS  Google Scholar 

  • Bertram, H. C., Malmendal, A., Petersen, B. O., et al. (2007). Effect of magnetic field strength on NMR-based metabonomic human urine data: Comparative study of 250, 400, 500, and 800 MHz. Analytical Chemistry, 79, 7110–7115. doi:10.1021/ac070928a.

    Article  PubMed  CAS  Google Scholar 

  • Britten, R. J., & McClure, Y. (1962). The amino acid pool in Escherichia coli. Bacteriological Reviews, 26, 292–335.

    PubMed  CAS  Google Scholar 

  • Claudino, W. M., Quattrone, A., Biganzoli, L., et al. (2007). Metabolomics: Available results, current research projects in breast cancer, and future applications. Journal of Clinical Oncology, 25, 2840–2846. doi:10.1200/JCO.2006.09.7550.

    Article  PubMed  CAS  Google Scholar 

  • Davis, D. L., & Bradlow, H. L. (1995). Can environmental estrogens cause breast cancer? Scientific American, 273, 166–172.

    Google Scholar 

  • Davis, D. L., Bradlow, H. L., Wolff, M., et al. (1993). Medical hypothesis: Xenoestrogens as preventable causes of breast cancer. Environmental Health Perspectives, 101, 372–377. doi:10.2307/3431889.

    Article  PubMed  CAS  Google Scholar 

  • de Koning, W., & van Dam, K. (1992). A method for the determination of changes of glycolytic metabolites in yeast on a subsecond time scale using extraction at neutral pH. Analytical Biochemistry, 204, 118–123. doi:10.1016/0003-2697(92)90149-2.

    Article  PubMed  Google Scholar 

  • Ekman, D. R., Teng, Q., Jensen, K. M., et al. (2007). NMR analysis of male fathead minnow urinary metabolites a potential approach for studying impacts of chemical exposures. Aquatic Toxicology (Amsterdam, Netherlands), 85, 104–112. doi:10.1016/j.aquatox.2007.08.005.

    CAS  Google Scholar 

  • Ekman, D. R., Teng, Q., Villeneuve, D. L., et al. (2008). Investigating compensation and recovery of fathead minnow (Pimephales promelas) exposed to 17β-ethynylestradiol with metabolite profiling. Environmental Science and Technology, 42, 4188–4194. doi:10.1021/es8000618.

    Article  PubMed  CAS  Google Scholar 

  • Fan, T. W. M. (1996). Metabolite profiling by one- and two-dimensional NMR analysis of complex mixtures. Progress in Nuclear Magnetic Resonance Spectroscopy, 28, 161–219.

    CAS  Google Scholar 

  • Green, K. A., & Carroll, J. S. (2007). Oestrogen-receptor-mediated transcription and the influence of co-factors and chromatin state. Nature Reviews Cancer, 7, 713–722. doi:10.1038/nrc2211.

    Article  PubMed  CAS  Google Scholar 

  • Harris, R. K., Becker, E. D., Menezes, S. M. C. D., et al. (2001). NMR Nomenclature nuclear spin properties and conventions for chemical shifts. Pure and Applied Chemistry, 73, 1795–1818. doi:10.1351/pac200173111795.

    Article  CAS  Google Scholar 

  • Kell, D. B. (2004). Metabolomics and systems biology: Making sense of the soup. Current Opinion in Microbiology, 7, 296–307. doi:10.1016/j.mib.2004.04.012.

    Article  PubMed  CAS  Google Scholar 

  • Keun, H. C., Ebbels, T. M. D., Antti, H., et al. (2002). Analytical reproducibility in 1H NMR based metabonomic urinalysis. Chemical Research in Toxicology, 15, 1380–1386. doi:10.1021/tx0255774.

    Article  PubMed  CAS  Google Scholar 

  • Koo, S. H. G., & Al-Rubeai, M. (2007). Metabolomics as a complementary tool in cell culture. Biotechnology and Applied Biochemistry, 47, 71–84. doi:10.1042/BA20060221.

    Article  Google Scholar 

  • Lane, A. N., & Fan, T. W. M. (2007). Quantification and identification of isotopomer distributions of metabolites in crude cell extracts using 1H TOCSY. Metabolomics, 3, 79–86. doi:10.1007/s11306-006-0047-x.

    Article  CAS  Google Scholar 

  • Lindon, J. C., Nicholson, J. K., & Everett, J. R. (1999). NMR spectroscopy of biofluids. Annual Review on NMR Spectroscopy, 38, 1–88. doi:10.1016/S0066-4103(08)60035-6.

    Article  CAS  Google Scholar 

  • National Research Council. (2007). Toxicity testing in the 21st century: A vision and a strategy. Washington, DC: National Academies Press.

    Google Scholar 

  • Nicholson, J. K., & Foxall, P. J. D. (1995). 750 MHz 1H and 1H-13C NMR spectroscopy of human blood plasma. Analytical Chemistry, 67, 793–811. doi:10.1021/ac00101a004.

    Article  PubMed  CAS  Google Scholar 

  • Robertson, D. G. (2005). Metabonomics in toxicology: A review. Toxicological Sciences, 85, 809–822. doi:10.1093/toxsci/kfi102.

    Article  PubMed  CAS  Google Scholar 

  • Safe, S. H. (1995). Do environmental estrogens playa role in development of breast cancer in women and male reproductive problems? Human and Ecological Risk Assessment, 1, 17–24.

    CAS  Google Scholar 

  • Shaka, A. J., Lee, C. J., & Pines, A. (1988). Iterative schemes for bilinear operators; application to spin decoupling. Journal of Magnetic Resonance (San Diego, Calif.), 77, 274–293.

    Google Scholar 

  • Smeaton, J. R., & Elliott, W. H. (1967). Selective release of ribonuclease-inhibitor from Bacillus subtilis. Biochemical and Biophysical Research Communications, 26, 75–81. doi:10.1016/0006-291X(67)90255-0.

    Article  PubMed  CAS  Google Scholar 

  • States, D. J., Haberkorn, R. A., & Ruben, D. J. (1982). A two-domensional nuclear Overhauser experiment with pure absorption phase in four quadrants. Journal of Magnetic Resonance (San Diego, Calif), 48, 286–292.

    Article  CAS  Google Scholar 

  • Ulrich, E. L., Akutsu, H., Doreleijers, J. F., et al. (2008). BioMagResBank. Nucleic Acids Research, 36, D402–D408. doi:10.1093/nar/gkm957.

    Article  PubMed  CAS  Google Scholar 

  • Viant, M. R. (2007). Revealing the metabolome of animal tissues using 1H nuclear magnetic resonance spectroscopy. In W. Weckwerth (Ed.), Methods in Molecular Biology. Clifton, NJ: Humana Press.

    Google Scholar 

  • Villas-Boas, S. G., Hojer-Pedersen, J., Akesson, M., et al. (2005). Global metabolome analysis of yeasts: Complete evaluation of sample preparation. Yeast (Chichester, England), 22, 1155–1169. doi:10.1002/yea.1308.

    Article  CAS  Google Scholar 

  • Villas-Boas, S. G., Nielsen, J., Smedsgaard, J., et al. (2007). Metabolome Analysis: An introduction. Wiley.

  • Warburg, O. (1956). On respiratory impairment in cancer cells. Science, 124, 269–270.

    PubMed  CAS  Google Scholar 

  • Warburg, O., Posener, K., & Negelei, E. (1924) Ueber den Stoffwechsel der Tumoren. Biochem. Z. 152, 319–344. (German). Reprinted in Warburg, O. (1930). On metabolism of tumors. Publisher: Constable, London.

  • Willker, W., Leibfritz, D., Kerssebaum, R., & Bermel, W. (1993). Gradient selection in inverse heteronuclear correlation spectroscopy. Magnetic Resonance in Chemistry, 31, 287–292. doi:10.1002/mrc.1260310315.

    Article  CAS  Google Scholar 

  • Wishart, D. S., Tzur, D., Knox, C., et al. (2007). HMDB: The human metabolome database. Nucleic Acids Research, 35, D521–D526. doi:10.1093/nar/gkl923.

    Article  PubMed  CAS  Google Scholar 

  • Yang, C., Richardson, A. D., Smith, J. W., & Osterman, A. (2007). Comparative metabolomics of breast cancer. Pacific Symposium on Biocomputing, 12, 181–192.

    Article  Google Scholar 

  • Zhu, G., & Bax, A. (1992). Two-dimensional linear prediction for signals truncated in both dimensions. Journal of Magnetic Resonance (San Diego, Calif), 98, 192–199.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded in part through the Computational Toxicology Program of the U.S. EPA Office of Research and Development and the U.S. EPA Office of Science Council Policy. It has been subjected to review by the National Exposure Research Laboratory and approved for publication. Approval does not signify that the contents reflect the views of the Agency, nor does mention of trade names or commercial products constitute endorsement or recommendation for use.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quincy Teng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teng, Q., Huang, W., Collette, T.W. et al. A direct cell quenching method for cell-culture based metabolomics. Metabolomics 5, 199–208 (2009). https://doi.org/10.1007/s11306-008-0137-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-008-0137-z

Keywords

Navigation