Skip to main content
Log in

“Magnetic Resonance Imaging Negative Positron Emission Tomography Positive” Temporal Lobe Epilepsy: FDG-PET Pattern Differs from Mesial Temporal Lobe Epilepsy

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

Some patients with temporal lobe epilepsy (TLE) lack evidence of hippocampal sclerosis (HS) on MRI (HS-ve). We hypothesized that this group would have a different pattern of 2-deoxy-2-[F-18]fluoro-d-glucose (FDG)-positron emission tomography (PET) hypometabolism than typical mesial TLE/HS patients with evidence of hippocampal atrophy on magnetic resonance imaging (MRI) (HS+ve), with a lateral temporal neocortical rather than mesial focus.

Procedures

Thirty consecutive HS-ve patients and 30 age- and sex-matched HS+ve patients with well-lateralized EEG were identified. FDG-PET was performed on 28 HS-ve patients and 24 HS+ve patients. Both groups were compared using statistical parametric mapping (SPM), directly and with FDG-PET from 20 healthy controls.

Results

Both groups showed lateralized temporal hypometabolism compared to controls. In HS+ve, this was antero–infero–mesial (T = 17.13); in HS-ve the main clustering was inferolateral (T = 17.63). When directly compared, HS+ve had greater hypometabolism inmesial temporal/hippocampal regions (T = 4.86); HS-ve had greater inferolateral temporal hypometabolism (T = 4.18).

Conclusions

These data support the hypothesis that focal hypometabolism involves primarily lateal neocortical rather than mesial temporal structures in ‘MRI-negative PET-positive TLE.’

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Cascino GD, Jack CR, Jr, Parisi JE, et al. (1991) Magnetic resonance imaging-based volume studies in temporal lobe epilepsy: pathological correlations. Ann Neurol 30:31–36

    Article  PubMed  CAS  Google Scholar 

  2. Cook MJ (1994) Mesial temporal sclerosis and volumetric investigations. Acta Neurol Scand Suppl:152:109–114 discussion

    Google Scholar 

  3. Carne RP, O’Brien TJ, Kilpatrick CJ, et al. (2004) MRI-negative PET-positive temporal lobe epilepsy: a distinct surgically remediable syndrome. Brain 127:2276–2285

    Article  PubMed  CAS  Google Scholar 

  4. O’Brien TJ, Hicks RJ, Ware R, et al. (2001) The utility of a 3-dimensional, large-field-of-view, sodium iodide crystal-based PET scanner in the presurgical evaluation of partial epilepsy. J Nucl Med 42:1158–1165

    PubMed  CAS  Google Scholar 

  5. Henry TR, Babb TL, Engel J, Jr, et al. (1994) Hippocampal neuronal loss and regional hypometabolism in temporal lobe epilepsy. Ann Neurol 36:925–927

    Article  PubMed  CAS  Google Scholar 

  6. Semah F, Baulac M, Hasboun D, et al. (1995) Is interictal temporal hypometabolism related to mesial temporal sclerosis? A positron emission tomography/magnetic resonance imaging confrontation. Epilepsia 36:447–456

    Article  PubMed  CAS  Google Scholar 

  7. O’Brien TJ, Newton MR, Cook MJ, et al. (1997) Hippocampal atrophy is not a major determinant of regional hypometabolism in temporal lobe epilepsy. Epilepsia 38:74–80

    Article  PubMed  CAS  Google Scholar 

  8. Cook MJ, Fish DR, Shorvon SD, Straughan K, Stevens JM (1992) Hippocampal volumetric and morphometric studies in frontal and temporal lobe epilepsy. Brain 115 (Pt 4):1001–1015

    Article  PubMed  Google Scholar 

  9. Pacia SV, Devinsky O, Perrine K, et al. (1996) Clinical features of neocortical temporal lobe epilepsy. Ann Neurol 40:724–730

    Article  PubMed  CAS  Google Scholar 

  10. Kim YK, Lee DS, Lee SK, et al. (2003) Differential features of metabolic abnormalities between medial and lateral temporal lobe epilepsy: quantitative analysis of (18)F-FDG PET using SPM. J Nucl Med 44:1006–1012

    PubMed  Google Scholar 

  11. Luby M, Spencer DD, Kim JH, deLanerolle N, McCarthy G, (1995) Hippocampal MRI volumetrics and temporal lobe substrates in medial temporal lobe epilepsy. Magn Reson Imaging 13:1065–1071

    Article  PubMed  CAS  Google Scholar 

  12. Engel J, Jr, Brown WJ, Kuhl DE, et al. (1982) Pathological findings underlying focal temporal lobe hypometabolism in partial epilepsy. Ann Neurol 12:518–528

    Article  PubMed  Google Scholar 

  13. Henry TR, Sutherling WW, Engel J, Jr, et al. (1991) Interictal cerebral metabolism in partial epilepsies of neocortical origin. Epilepsy Res 10:174–182

    Article  PubMed  CAS  Google Scholar 

  14. Pozo M, Pascau J, Rojo P, et al. (2000) Correlation between FDG PET data and EEG dipole modeling. Clin Positron Imaging 3:173–2000

    Google Scholar 

  15. Akimura T, Yeh HS, Mantil JC, et al. (1999) Cerebral metabolism of the remote area after epilepsy surgery. Neurol Med Chir (Tokyo) 39:16–25

    Article  CAS  Google Scholar 

  16. Spanaki MV, Kopylev L, DeCarli C, et al. (2000) Postoperative changes in cerebral metabolism in temporal lobe epilepsy. Arch Neurol 57:1447–1452

    Article  PubMed  CAS  Google Scholar 

  17. Chassoux F, Semah F, Bouilleret V, et al. (2004) Metabolic changes and electro-clinical patterns in mesio-temporal lobe epilepsy: a correlative study. Brain 127:164–174

    Article  PubMed  Google Scholar 

  18. Koutroumanidis M, Binnie CD, Elwes RD, et al. (1998) Interictal regional slow activity in temporal lobe epilepsy correlates with lateral temporal hypometabolism as imaged with 18FDG PET: neurophysiological and metabolic implications. J Neurol Neurosurg Psychiatry 65:170–176

    PubMed  CAS  Google Scholar 

  19. Foldvary N, Lee N, Hanson MW, et al. (1999) Correlation of hippocampal neuronal density and FDG-PET in mesial temporal lobe epilepsy. Epilepsia 40:26–29

    Article  PubMed  CAS  Google Scholar 

  20. Matheja P, Kuwert T, Ludemann P, et al. (2001) Temporal hypometabolism at the onset of cryptogenic temporal lobe epilepsy. Eur J Nucl Med 28:625–632

    Article  PubMed  CAS  Google Scholar 

  21. Theodore WH, Kelley K, Toczek MT, Gaillard WD (2004) Epilepsy duration, febrile seizures, and cerebral glucose metabolism. Epilepsia 45:276–279

    Article  PubMed  Google Scholar 

  22. Spanaki MV, Kopylev L, Liow K, et al. (2000) Relationship of seizure frequency to hippocampus volume and metabolism in temporal lobe epilepsy. Epilepsia 41:1227–1229

    Article  PubMed  CAS  Google Scholar 

  23. Dlugos DJ, Jaggi J, O’Connor WM, et al. (1999) Hippocampal cell density and subcortical metabolism in temporal lobe epilepsy. Epilepsia 40:408–413

    Article  PubMed  CAS  Google Scholar 

  24. Theodore WH, Gaillard WD, De Carli C, Bhatia S, Hatta J (2001) Hippocampal volume and glucose metabolism in temporal lobe epileptic foci. Epilepsia 42:130–132

    Article  PubMed  CAS  Google Scholar 

  25. Diehl B, LaPresto E, Najm I, et al. (2003) Neocortical Temporal FDG-PET hypometabolism correlates with temporal lobe atrophy in hippocampal sclerosis associated with microscopic cortical dysplasia. Epilepsia 44:559–564

    Article  PubMed  Google Scholar 

  26. Nishio S, Morioka T, Hisada K, Fukui M (2000) Temporal lobe epilepsy: a clinicopathological study with special reference to temporal neocortical changes. Neurosurg Rev 23:84–89

    PubMed  CAS  Google Scholar 

  27. Vielhaber S, Von Oertzen JH, Kudin AF, et al. (2003) Correlation of hippocampal glucose oxidation capacity and interictal FDG-PET in temporal lobe epilepsy. Epilepsia 44:193–199

    Article  PubMed  CAS  Google Scholar 

  28. O’Brien TJ, Hicks RJ, Ware R, et al. (2001) The utility of a 3-dimensional, large-field-of-view, sodium iodide crystal-based PET scanner in the presurgical evaluation of partial epilepsy. J Nucl Med 42:1158–1165

    PubMed  CAS  Google Scholar 

  29. Casse R, Rowe CC, Newton M, Berlangieri SU, Scott AM (2002) Positron emission tomography and epilepsy. Mol Imaging Biol 4:338–351

    Article  PubMed  Google Scholar 

  30. Choi JY, Kim SJ, Hong SB, et al. (2003) Extratemporal hypometabolism on FDG PET in temporal lobe epilepsy as a predictor of seizure outcome after temporal lobectomy. Eur J Nucl Med Mol Imaging 30(04):581–587

    Article  PubMed  Google Scholar 

  31. Newberg AB, Alavi A, Berlin J, et al. (2000) Ipsilateral and contralateral thalamic hypometabolism as a predictor of outcome after temporal lobectomy for seizures. J Nucl Med 41:1964–1968

    PubMed  CAS  Google Scholar 

  32. Delbeke D, Lawrence SK, Abou-Khalil BW, Blumenkopf B, Kessler RM (1996) Postsurgical outcome of patients with uncontrolled complex partial seizures and temporal lobe hypometabolism on 18FDG-positron emission tomography. Invest Radiol 31:261–266

    Article  PubMed  CAS  Google Scholar 

  33. Radtke RA, Hanson MW, Hoffman JM, et al. (1993) Temporal lobe hypometabolism on PET: predictor of seizure control after temporal lobectomy. Neurology 43:1088–1092

    PubMed  CAS  Google Scholar 

  34. Theodore WH, Sato S, Kufta CV, Gaillard WD, Kelley K (1997) FDG-positron emission tomography and invasive EEG: seizure focus detection and surgical outcome. Epilepsia 38:81–86

    Article  PubMed  CAS  Google Scholar 

  35. Signorini M, Paulesu E, Friston K, et al. (1999) Rapid assessment of regional cerebral metabolic abnormalities in single subjects with quantitative and nonquantitative [18F]FDG PET: a clinical validation of statistical parametric mapping. Neuroimage 9:63–80

    Article  PubMed  CAS  Google Scholar 

  36. Van Bogaert P, Massager N, Tugendhaft P, et al. (2000) Statistical parametric mapping of regional glucose metabolism in mesial temporal lobe epilepsy. Neuroimage 12:129–138

    Article  PubMed  Google Scholar 

  37. Drzezga A, Arnold S, Minoshima S, et al. (1999) 18F-FDG PET studies in patients with extratemporal and temporal epilepsy: evaluation of an observer-independent analysis. J Nucl Med 40:737–746

    PubMed  CAS  Google Scholar 

  38. Duarte PS, Zhuang H, Couturier O, Alavi A (2001) Does semi-quantitative analysis of FDG-PET have any additional value in the diagnosis of mesial temporal sclerosis? Arq Neuropsiquiatr 59:871–874

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

RC was supported by an Epilepsy Fellowship funded by an unrestricted research grant from Sanofi-Synthelabo Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. P. Carne MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carne, R., Cook, M., MacGregor, L. et al. “Magnetic Resonance Imaging Negative Positron Emission Tomography Positive” Temporal Lobe Epilepsy: FDG-PET Pattern Differs from Mesial Temporal Lobe Epilepsy. Mol Imaging Biol 9, 32–42 (2007). https://doi.org/10.1007/s11307-006-0073-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-006-0073-0

Key words

Navigation