Skip to main content
Log in

Relationships among cognitive function, fine motor speed and age in the rhesus monkey

  • Research Article
  • Published:
AGE Aims and scope Submit manuscript

Abstract

Declines in fine motor skills and cognitive function are well known features of human aging. Yet, the relationship between age-related impairments in motor and cognitive function remains unclear. Rhesus monkeys, like humans, show marked decline in cognitive and fine motor function with age and are excellent models to investigate potential interactions between age-related declines in cognitive and motor functioning. We investigated the relationships among cognition, motor function and age in 30 male and female rhesus monkeys, 5–28 years of age, tested on a battery of cognitive tasks [acquisition of the delayed non-matching-to-sample (DNMS), DNMS-120s, DNMS-600s, acquisition of delayed recognition span test (DRST), spatial-DRST and object-DRST] and a fine motor task (Lifesaver test). Global cognitive ability, as assessed by the cognitive performance index (CPI), was impaired with age in both sexes, while age-related motor slowing was found only in males. After age was controlled for, half the variance in CPI was predicted by motor speed, with better cognitive ability associated with slower motor skills. Analyses at the level of each cognitive task revealed that motor speed and age predicted the rate of acquisition of the DNMS. This relationship was robust in males and absent in females. Motor speed was not a significant predictor of any other cognitive variable. We conclude that the relationship between cognition and motor function (1) may be limited to non-spatial tasks; (2) exists independently of age; (3) may reflect different contributions of the fronto-striatal system; (4) may be particularly evident in males.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Arnsten AF, Goldman-Rakic PS (1985) Alpha 2-adrenergic mechanisms in prefrontal cortex associated with cognitive decline in aged nonhuman primates. Science 230:1273–1276

    Article  PubMed  CAS  Google Scholar 

  • Arnsten AF, Cai JX, Murphy BL et al (1994) Dopamine D1 receptor mechanisms in the cognitive performance of young adult and aged monkeys. Psychopharmacology 116:143–151

    Article  PubMed  CAS  Google Scholar 

  • Bachevalier J, Mishkin M (1994) Effects of selective neonatal temporal lobe lesions on visual recognition memory in rhesus monkeys. J Neurosci 14:2128–2139

    PubMed  CAS  Google Scholar 

  • Braver TS, Barch DM, Cohen JD (2002) The role of prefrontal cortex in normal and disordered cognitive control: a cognitive neuroscience perspective. In: Stuss DT, Knight RT (eds) Principles of frontal lobe function. Oxford University Press, Oxford

    Google Scholar 

  • Camicioli R, Howieson D, Oken B et al (1998) Motor slowing precedes cognitive impairment in the oldest old. Neurology 50:1496–1498

    PubMed  CAS  Google Scholar 

  • Casey BJ, Tottenham N, Fossella J (2002) Clinical, imaging, lesion, and genetic approaches toward a model of cognitive control. Dev Psychobiol 40:237–254

    Article  PubMed  CAS  Google Scholar 

  • Cass WA, Grondin R, Andersen AH et al (2006) Iron accumulation in the striatum predicts aging-related decline in motor function in rhesus monkeys. Neurobiol Aging (in Press)

  • Chen G-H, Wang Y-J, Zhang L-Q et al (2004) Age- and sex-related disturbance in a battery of sensorimotor and cognitive tasks in Kunming mice. Physiol Behav 83:531–541

    Article  PubMed  CAS  Google Scholar 

  • Chudasama Y, Robbins TW (2006) Functions of frontostriatal systems in cognition: comparative neuropsychopharmacological studies in rats, monkeys and humans. Biol Psychol 73:19–38

    Article  PubMed  CAS  Google Scholar 

  • Craik FIM, Salthouse TA (eds) (2000) The handbook of aging and cognition. Lawrence Erlbaum Associates, Mahwah, NJ

  • Daselaar SM, Rombouts SARB, Veltman DJ et al (2003) Similar network activated by young and old adults during the acquisition of a motor sequence. Neurobiol Aging 24:1013–1019

    Article  PubMed  Google Scholar 

  • Emborg ME, Kordower JH (2002) Nigrostriatal function in aged nonhuman primates. In: Erwin JM, Hof, PR (eds) Aging in nonhuman primates. Karger, Basel

    Google Scholar 

  • Emborg ME, Ma SY, Mufson EJ et al (1998) Age-related declines in nigral neuronal function correlate with motor impairments in rhesus monkeys. J Comp Neurol 401:253–265

    Article  PubMed  CAS  Google Scholar 

  • Gage FH, Dunnett SB, Bjorklund A (1989) Age-related impairments in spatial memory are independent of those in sensorimotor skills. Neurobiol Aging 10:347–352

    Article  PubMed  CAS  Google Scholar 

  • Gallagher M, Burwell RD (1989) Relationship of age-related decline across several behavioral domains. Neurobiol Aging 10:691–708

    Article  PubMed  CAS  Google Scholar 

  • Gallagher M, Rapp PR (1997) The use of animal models to study the effects of aging on cognition. Annu Rev Psychol 48:339–370

    Article  PubMed  CAS  Google Scholar 

  • Gerhardt GA, Cass WA, Yi A et al (2002) Changes in somatodendritic but not terminal dopamine regulation in aged rhesus monkeys. J Neurochem 80:168–177

    Article  PubMed  CAS  Google Scholar 

  • Grondin R, Zhang Z, Gerhardt GA et al (2000) Dopaminergic therapy improves upper limb motor performance in aged rhesus monkeys. Ann Neurol 48:250–253

    Article  PubMed  CAS  Google Scholar 

  • Herndon JG, Lacreuse A (2002) The rhesus monkey model as a heuristic resource in cognitive aging research. In: Erwin J, Hof P (eds) Aging in nonhuman primates. Karger, Basel

    Google Scholar 

  • Herndon JG, Moss MB, Rosene DL et al (1997) Patterns of cognitive decline in aged rhesus monkeys. Behav Brain Res 87:25–34

    Article  PubMed  CAS  Google Scholar 

  • Herndon JG, Lacreuse A, Ladinsky E et al (1999) Age-related decline in DHEAS is not related to cognitive impairment in aged monkeys. Neuroreport 10:3507–3511

    PubMed  CAS  Google Scholar 

  • Irwin I, DeLanney LE, McNeill T et al (1994) Aging and the nigrostriatal dopamine system: a non-human primate study. Neurodegeneration 3:251–255

    PubMed  CAS  Google Scholar 

  • Jenkins IH, Brooks DJ, Nixon PD et al (1994) Motor sequence learning: a study with positron emission tomography. J Neurosci 14:3775–3790

    PubMed  CAS  Google Scholar 

  • Karni A, Meyer G, Jezzard P et al (1995) Functional MRI evidence for adult motor cortex plasticity during motor skill learning. Nature 377:155–158

    Article  PubMed  CAS  Google Scholar 

  • Kluger A, Gianutsos J, Golomb J et al (1997) Patterns of motor impairment in normal aging, mild cognitive decline, and early Alzheimer’s disease. J Gerontol B Psychol Sci Soc Sci 52:P28–39

    PubMed  CAS  Google Scholar 

  • Kowalska DM, Bachevalier J, Mishkin M (1991) The role of the inferior prefrontal convexity in performance of delayed nonmatching-to-sample. Neuropsychologia 29:583–600

    Article  PubMed  CAS  Google Scholar 

  • Krampe RT (2002) Aging, expertise and fine motor movement. Neurosci Biobehav Rev 26:769–776

    Article  PubMed  Google Scholar 

  • Laakso A, Vilkman H, Bergman J et al (2002) Sex differences in striatal presynaptic dopamine synthesis capacity in healthy subjects. Biol Psychiatry 52:759–763

    Article  PubMed  CAS  Google Scholar 

  • Lacreuse A, Diehl MM, Goh MY et al (2005) Sex differences in age-related motor slowing in the rhesus monkey: behavioral and neuroimaging data. Neurobiol Aging 26:543–551

    Article  PubMed  Google Scholar 

  • Li KZH, Lindenberger U (2002) Relations between aging sensory/sensorimotor and cognitive functions. Neurosci Biobehav Rev 26:777–783

    Article  PubMed  Google Scholar 

  • Li SC, Aggen SH, Nesselroade JR et al (2001) Short-term fluctuations in elderly people’s sensorimotor functioning predict text and spatial memory performance: The MacArthur successful aging studies. Gerontology 47:100

    Article  PubMed  CAS  Google Scholar 

  • Liston C, Watts R, Tottenham N et al (2006) Frontostriatal microstructure modulates efficient recruitment of cognitive control. Cereb Cortex 16:553–560

    Article  PubMed  Google Scholar 

  • Matochik JA, Chefer SI, Lane MA et al (2000) Age-related decline in striatal volume in monkeys as measured by magnetic resonance imaging. Neurobiol Aging 21:591–598

    Article  PubMed  CAS  Google Scholar 

  • Miyagawa H, Hasegawa M, Fukuta T et al (1998) Dissociation of impairment between spatial memory, and motor function and emotional behavior in aged rats. Behav Brain Res 91:73–81

    Article  PubMed  CAS  Google Scholar 

  • Moore TL, Schettler SP, Killiany RJ et al (2005) Cognitive impairment in aged rhesus monkeys associated with monoamine receptors in the prefrontal cortex. Behav Brain Res 160:208–221

    Article  PubMed  CAS  Google Scholar 

  • Mozley LH, Gur RC, Mozley PD et al (2001) Striatal dopamine transporters and cognitive functioning in healthy men and women. Am J Psychiatry 158:1492–1499

    Article  PubMed  CAS  Google Scholar 

  • Mumby DG, Wood ER, Duva CA et al (1996) Ischemia-induced object-recognition deficits in rats are attenuated by hippocampal ablation before or soon after ischemia. Behav Neurosci 110:266–281

    Article  PubMed  CAS  Google Scholar 

  • Munro CA, McCaul ME, Wong DF et al (2006) Sex differences in striatal dopamine release in healthy adults. Biol Psychiatry 59:966–974

    Article  PubMed  CAS  Google Scholar 

  • Nieoullon A, Coquerel A (2003) Dopamine: a key regulator to adapt action, emotion, motivation and cognition. Curr Opin Neurol 16(2):3–9

    Article  Google Scholar 

  • Park D, Schwartz N (eds) (2000) Cognitive aging: a primer. Psychology Press, Philadelphia, PA

  • Pohjalainen T, Rinne JO, Nagren K et al (1998) Sex differences in the striatal dopamine D2 receptor binding characteristics in vivo. Am J Psychiatry 155:768–773

    PubMed  CAS  Google Scholar 

  • Poldrack RA, Packard MG (2003) Competition among multiple memory systems: converging evidence from animal and human brain studies. Neuropsychologia 41:245–251

    Article  PubMed  Google Scholar 

  • Rapp PR, Rosenberg RA, Gallagher M (1987) An evaluation of spatial information processing in aged rats. Behav Neurosci 101:3–12

    Article  PubMed  CAS  Google Scholar 

  • Raz N, Williamson A, Gunning-Dixon F et al (2000) Neuroanatomical and cognitive correlates of adult age differences in acquisition of a perceptual-motor skill. Microsc Res Tech 51:85–93

    Article  PubMed  CAS  Google Scholar 

  • Reeves SJ (2005) A positron emission tomography (PET) investigation of the role of striatal dopamine (D2) receptor availability in spatial cognition. Neuroimage 28:216–226

    Article  PubMed  Google Scholar 

  • Reeves S, Bench C, Howard R (2002) Ageing and the nigrostriatal dopaminergic system. Int J Geriatr Psychiatry 17:359–370

    Article  PubMed  CAS  Google Scholar 

  • Roberts JA (2002) The aged rhesus macaque in neuroscience research: importance of the nonhuman primate model. In: Erwin JM, Hof PR (eds) Aging in nonhuman primates. Karger, Basel

    Google Scholar 

  • Sandell JH, Peters A (2003) Disrupted myelin and axon loss in the anterior commissure of the aged rhesus monkey. J Comp Neurol 466:14–30

    Article  PubMed  Google Scholar 

  • Shadmehr R, Holcomb HH (1997) Neural correlates of motor memory consolidation. Science 277:821–825

    Article  PubMed  CAS  Google Scholar 

  • Spirduso WW, MacRae PG (1990) Motor performance and aging. In: Birren JE, Schaie KW (eds). Handbook of the psychology of aging. Academic Press, San Diego

    Google Scholar 

  • Toni I, Krams M, Turner R et al (1998) The time course of changes during motor sequence learning: a whole-brain fMRI study. J Neuroimage 8:50–61

    Article  CAS  Google Scholar 

  • van Dyck CH, Seibyl JP, Malison RT et al (2002) Age-related decline in dopamine transporters: analysis of striatal subregions, nonlinear effects, and hemispheric asymmetries. Am J Geriatr Psychiatry 10:36–43

    Article  PubMed  Google Scholar 

  • Volkow ND, Gur RC, Wang GJ et al (1998) Association between decline in brain dopamine activity with age and cognitive and motor impairment in healthy individuals. Am J Psychiatry 155:344–349

    PubMed  CAS  Google Scholar 

  • Voytko ML (1998) Nonhuman primates as models for aging and Alzheimer’s disease. Lab Anim Sci 48:611–617

    PubMed  CAS  Google Scholar 

  • Zhang Z, Andersen A, Smith C et al. (2000) Motor slowing and parkinsonian signs in aging rhesus monkeys mirror human aging. J Gerontol 55:B473–480

    Google Scholar 

  • Zola-Morgan S, Squire LR, Amaral DG et al (1989) Lesions of perirhinal and parahippocampal cortex that spare the amygdala and hippocampal formation produce severe memory impairment. J Neurosci 9:4355–4370

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grants RR00165 and AG00001. We thank Marc Rabner and Katryn Tapper for their assistance with data collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnès Lacreuse.

About this article

Cite this article

Lacreuse, A., Espinosa, P.M. & Herndon, J.G. Relationships among cognitive function, fine motor speed and age in the rhesus monkey. AGE 28, 255–264 (2006). https://doi.org/10.1007/s11357-006-9019-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-006-9019-3

Key words

Navigation