Skip to main content

Advertisement

Log in

Could Sirt1-mediated epigenetic effects contribute to the longevity response to dietary restriction and be mimicked by other dietary interventions?

  • Published:
AGE Aims and scope Submit manuscript

Abstract

Dietary restriction (DR) increases lifespan in a range of evolutionarily distinct species. The polyphenol resveratrol may be a dietary mimetic of some effects of DR. The pivotal role of the mammalian histone deacetylase (HDAC) Sirt1, and its homologue in other organisms, in mediating the effects of both DR and resveratrol on lifespan/ageing suggests it may be the common conduit through which these dietary interventions influence ageing. We propose the novel hypothesis that effects of DR relevant to lifespan extension include maintenance of DNA methylation patterns through Sirt1-mediated epigenetic effects, and proffer the view that dietary components, including resveratrol, may mimic these actions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Autier P, Gandini S (2007) Vitamin D supplementation and total mortality: a meta-analysis of randomized controlled trials. Arch Intern Med 167:1730–1777

    CAS  PubMed  Google Scholar 

  • Aviram A, Zimrah Y, Shaklai M et al (1994) Comparison between the effect of butyric acid and its prodrug pivaloyloxymethylbutyrate on histones hyperacetylation in an HL-60 leukemic cell line. Int J Cancer 56:906–909

    CAS  PubMed  Google Scholar 

  • Barger JL, Kayo T, Vann JM et al (2008) A low dose of dietary resveratrol partially mimics caloric restriction and retards aging parameters in mice. PLoS ONE 3:e2264

    PubMed  Google Scholar 

  • Bartke A, Brown-Borg H (2004) Life extension in the dwarf mouse. Curr Top Dev Biol 63:189–225

    CAS  PubMed  Google Scholar 

  • Baur JA, Pearson KJ, Price NL et al (2006) Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444:337–342

    CAS  PubMed  Google Scholar 

  • Beach RS, Gershwin ME, Hurley LS (1982) Gestational zinc deprivation in mice: persistence of immunodeficiency for three generations. Science 218:469–471

    CAS  PubMed  Google Scholar 

  • Bishop NA, Guarente L (2007) Genetic links between diet and lifespan: shared mechanisms from yeast to humans. Nat Rev Genet 8:835–844

    CAS  PubMed  Google Scholar 

  • Blanc S, Schoeller D, Kemnitz J et al (2003) Energy expenditure of rhesus monkeys subjected to 11 years of dietary restriction. J Clin Endocrinol Metab 88:16–23

    CAS  PubMed  Google Scholar 

  • Bonsch D, Lenz B, Reulbach U et al (2004) Homocysteine associated genomic DNA hypermethylation in patients with chronic alcoholism. J Neural Transm 111:1611–1616

    CAS  PubMed  Google Scholar 

  • Bordone L, Motta MC, Picard F et al (2006) Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic beta cells. PLoS Biol 4:e31

    PubMed  Google Scholar 

  • Bordone L, Cohen D, Robinson A et al (2007) SIRT1 transgenic mice show phenotypes resembling calorie restriction. Aging Cell 6:759–767

    CAS  PubMed  Google Scholar 

  • Borra MT, Smith BC, Denu JM (2005) Mechanism of human SIRT1 activation by resveratrol. J Biol Chem 280:17187–17195

    CAS  PubMed  Google Scholar 

  • Burdge GC, Slater-Jefferies J, Torrens C et al (2007) Dietary protein restriction of pregnant rats in the F0 generation induces altered methylation of hepatic gene promoters in the adult male offspring in the F1 and F2 generations. Br J Nutr 97:435–439

    CAS  PubMed  Google Scholar 

  • Casillas MA Jr, Lopatina N, Andrews LG et al (2003) Transcriptional control of the DNA methyltransferases is altered in aging and neoplastically-transformed human fibroblasts. Mol Cell Biochem 252:33–43

    CAS  PubMed  Google Scholar 

  • Castro CE, Sevall JS (1980) Alteration of higher order structure of rat liver chromatin by dietary composition. J Nutr 110:105–116

    CAS  PubMed  Google Scholar 

  • Chen D, Guarente L (2007) SIR2: a potential target for calorie restriction mimetics. Trends Mol Med 13:64–71

    CAS  PubMed  Google Scholar 

  • Chen D, Bruno J, Easlon E et al (2008) Tissue-specific regulation of SIRT1 by calorie restriction. Genes Dev 22:1753–1757

    CAS  PubMed  Google Scholar 

  • Cheng HL, Mostoslavsky R, Saito S et al (2003) Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice. Proc Natl Acad Sci USA 100:10794–10799

    CAS  PubMed  Google Scholar 

  • Choi SW, Stickel F, Baik HW et al (1999) Chronic alcohol consumption induces genomic but not p53-specific DNA hypomethylation in rat colon. J Nutr 129:1945–1950

    CAS  PubMed  Google Scholar 

  • Civitarese AE, Carling S, Heilbronn LK et al (2007) Calorie restriction increases muscle mitochondrial biogenesis in healthy humans. PLoS Med 4:e76

    PubMed  Google Scholar 

  • Cohen HY, Miller C, Bitterman KJ et al (2004) Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science 305:390–392

    CAS  PubMed  Google Scholar 

  • Colman RJ, Ramsey JJ, Roecker EB et al (1999) Body fat distribution with long-term dietary restriction in adult male rhesus macaques. J Gerontol A Biol Sci Med Sci 54:B283–B290

    CAS  PubMed  Google Scholar 

  • Dashwood RH, Myzak MC, Ho E (2006) Dietary HDAC inhibitors: time to rethink weak ligands in cancer chemoprevention? Carcinogenesis 27:344–349

    CAS  PubMed  Google Scholar 

  • Davis CD, Uthus EO (2002) Dietary selenite and azadeoxycytidine treatments affect dimethylhydrazine-induced aberrant crypt formation in rat colon and DNA methylation in HT-29 cells. J Nutr 132:292–297

    CAS  PubMed  Google Scholar 

  • Davis CD, Uthus EO (2003) Dietary folate and selenium affect dimethylhydrazine-induced aberrant crypt formation, global DNA methylation and one-carbon metabolism in rats. J Nutr 133:2907–2914

    CAS  PubMed  Google Scholar 

  • Davis CD, Uthus EO, Finley JW (2000) Dietary selenium and arsenic affect DNA methylation in vitro in Caco-2 cells and in vivo in rat liver and colon. J Nutr 130:2903–2909

    CAS  PubMed  Google Scholar 

  • de Magalhaes JP, Faragher RG (2008) Cell divisions and mammalian aging: integrative biology insights from genes that regulate longevity. Bioessays 30:567–578

    PubMed  Google Scholar 

  • Dhahbi JM, Kim HJ, Mote PL et al (2004) Temporal linkage between the phenotypic and genomic responses to caloric restriction. Proc Natl Acad Sci USA 101:5524–5529

    CAS  PubMed  Google Scholar 

  • Di Croce L, Raker VA, Corsaro M et al (2002) Methyltransferase recruitment and DNA hypermethylation of target promoters by an oncogenic transcription factor. Science 295:1079–1082

    PubMed  Google Scholar 

  • Dolinoy DC, Weidman JR, Waterland RA et al (2006) Maternal genistein alters coat color and protects Avy mouse offspring from obesity by modifying the fetal epigenome. Environ Health Perspect 114:567–572

    Article  CAS  PubMed  Google Scholar 

  • Dolinoy DC, Huang D, Jirtle RL (2007) Maternal nutrient supplementation counteracts bisphenol A-induced DNA hypomethylation in early development. Proc Natl Acad Sci USA 104:13056–13061

    CAS  PubMed  Google Scholar 

  • Eden A, Gaudet F, Waghmare A et al (2003) Chromosomal instability and tumors promoted by DNA hypomethylation. Science 300:455

    CAS  PubMed  Google Scholar 

  • Fang MZ, Chen D, Sun Y et al (2005) Reversal of hypermethylation and reactivation of p16INK4a, RARbeta, and MGMT genes by genistein and other isoflavones from soy. Clin Cancer Res 11:7033–7041

    CAS  PubMed  Google Scholar 

  • Fernandez-Twinn DS, Ozanne SE (2006) Mechanisms by which poor early growth programs type-2 diabetes, obesity and the metabolic syndrome. Physiol Behav 88:234–243

    CAS  PubMed  Google Scholar 

  • Fontana L, Klein S (2007) Aging, adiposity, and calorie restriction. JAMA 297:986–994

    CAS  PubMed  Google Scholar 

  • Fontana L, Meyer TE, Klein S et al (2004) Long-term calorie restriction is highly effective in reducing the risk for atherosclerosis in humans. Proc Natl Acad Sci USA 101:6659–6663

    CAS  PubMed  Google Scholar 

  • Fraga MF, Ballestar E, Paz MF et al (2005) Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci USA 102:10604–10609

    CAS  PubMed  Google Scholar 

  • Fraga MF, Agrelo R, Esteller M (2007) Cross-talk between aging and cancer: the epigenetic language. Ann N Y Acad Sci 1100:60–74

    CAS  PubMed  Google Scholar 

  • Gaudet F, Hodgson JG, Eden A et al (2003) Induction of tumors in mice by genomic hypomethylation. Science 300:489–492

    CAS  PubMed  Google Scholar 

  • Gonzalo S, Jaco I, Fraga MF et al (2006) DNA methyltransferases control telomere length and telomere recombination in mammalian cells. Nat Cell Biol 8:416–424

    CAS  PubMed  Google Scholar 

  • Gresl TA, Colman RJ, Roecker EB et al (2001) Dietary restriction and glucose regulation in aging rhesus monkeys: a follow-up report at 8.5 yr. Am J Physiol Endocrinol Metab 281:E757–E765

    CAS  PubMed  Google Scholar 

  • Guarente L (2007) Sirtuins in aging and disease. Cold Spring Harb Symp Quant Biol 72:483–488

    CAS  PubMed  Google Scholar 

  • Guarente L, Picard F (2005) Calorie restriction—the SIR2 connection. Cell 120:473–482

    CAS  PubMed  Google Scholar 

  • Happel N, Doenecke D, Sekeri-Pataryas KE et al (2008) H1 histone subtype constitution and phosphorylation state of the ageing cell system of human peripheral blood lymphocytes. Exp Gerontol 43:184–199

    CAS  PubMed  Google Scholar 

  • Harrison DE, Archer JR, Astle CM (1984) Effects of food restriction on aging: separation of food intake and adiposity. Proc Natl Acad Sci USA 81:1835–1838

    CAS  PubMed  Google Scholar 

  • Hass BS, Hart RW, Lu MH et al (1993) Effects of caloric restriction in animals on cellular function, oncogene expression, and DNA methylation in vitro. Mutat Res 295:281–289

    CAS  PubMed  Google Scholar 

  • Herbig U, Ferreira M, Condel L et al (2006) Cellular senescence in aging primates. Science 311:1257

    CAS  Google Scholar 

  • Higami Y, Pugh TD, Page GP et al (2004) Adipose tissue energy metabolism: altered gene expression profile of mice subjected to long-term caloric restriction. Faseb J 18:415–417

    CAS  PubMed  Google Scholar 

  • Holloszy JO (1997) Mortality rate and longevity of food-restricted exercising male rats: a reevaluation. J Appl Physiol 82:399–403

    CAS  PubMed  Google Scholar 

  • Holloszy JO, Smith EK, Vining M et al (1985) Effect of voluntary exercise on longevity of rats. J Appl Physiol 59:826–831

    CAS  PubMed  Google Scholar 

  • Howard BH (1996) Replicative senescence: considerations relating to the stability of heterochromatin domains. Exp Gerontol 31:281–293

    CAS  PubMed  Google Scholar 

  • Ishida E, Nakamura M, Ikuta M et al (2005) Promotor hypermethylation of p14ARF is a key alteration for progression of oral squamous cell carcinoma. Oral Oncol 41:614–622

    CAS  PubMed  Google Scholar 

  • Issa JP, Ottaviano YL, Celano P et al (1994) Methylation of the oestrogen receptor CpG island links ageing and neoplasia in human colon. Nat Genet 7:536–540

    CAS  PubMed  Google Scholar 

  • Issa JP, Ahuja N, Toyota M et al (2001) Accelerated age-related CpG island methylation in ulcerative colitis. Cancer Res 61:3573–3577

    CAS  PubMed  Google Scholar 

  • Jacob RA, Gretz DM, Taylor PC et al (1998) Moderate folate depletion increases plasma homocysteine and decreases lymphocyte DNA methylation in postmenopausal women. J Nutr 128:1204–1212

    CAS  PubMed  Google Scholar 

  • Kagawa Y (1978) Impact of Westernization on the nutrition of Japanese: changes in physique, cancer, longevity and centenarians. Prev Med 7:205–217

    CAS  PubMed  Google Scholar 

  • Kim MJ, Aiken JM, Havighurst T et al (1997) Adult-onset energy restriction of rhesus monkeys attenuates oxidative stress-induced cytokine expression by peripheral blood mononuclear cells. J Nutr 127:2293–2301

    CAS  PubMed  Google Scholar 

  • Kim J, Kim JY, Song KS et al (2007) Epigenetic changes in estrogen receptor beta gene in atherosclerotic cardiovascular tissues and in-vitro vascular senescence. Biochim Biophys Acta 1772:72–80

    CAS  PubMed  Google Scholar 

  • Klar AJ, Fogel S, Macleod K (1979) MAR1—a regulator of the HMa and HMalpha loci in Saccharomyces cerevisiae. Genetics 93:37–50

    PubMed  CAS  Google Scholar 

  • Kwabi-Addo B, Chung W, Shen L et al (2007) Age-related DNA methylation changes in normal human prostate tissues. Clin Cancer Res 13:3796–3802

    CAS  PubMed  Google Scholar 

  • Lagouge M, Argmann C, Gerhart-Hines Z et al (2006) Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 127:1109–1122

    CAS  PubMed  Google Scholar 

  • Lane MA, Baer DJ, Rumpler WV et al (1996) Calorie restriction lowers body temperature in rhesus monkeys, consistent with a postulated anti-aging mechanism in rodents. Proc Natl Acad Sci USA 93:4159–4164

    CAS  PubMed  Google Scholar 

  • Lane MA, Ingram DK, Roth GS (1999) Calorie restriction in nonhuman primates: effects on diabetes and cardiovascular disease risk. Toxicol Sci 52:41–48

    CAS  PubMed  Google Scholar 

  • Langley E, Pearson M, Faretta M et al (2002) Human SIR2 deacetylates p53 and antagonizes PML/p53-induced cellular senescence. EMBO J 21:2383–2396

    CAS  PubMed  Google Scholar 

  • Lee WJ, Shim JY, Zhu BT (2005) Mechanisms for the inhibition of DNA methyltransferases by tea catechins and bioflavonoids. Mol Pharmacol 68:1018–1030

    CAS  PubMed  Google Scholar 

  • Lillycrop KA, Phillips ES, Jackson AA et al (2005) Dietary protein restriction of pregnant rats induces and folic acid supplementation prevents epigenetic modification of hepatic gene expression in the offspring. J Nutr 135:1382–1386

    CAS  PubMed  Google Scholar 

  • Lillycrop KA, Slater-Jefferies JL, Hanson MA et al (2007) Induction of altered epigenetic regulation of the hepatic glucocorticoid receptor in the offspring of rats fed a protein-restricted diet during pregnancy suggests that reduced DNA methyltransferase-1 expression is involved in impaired DNA methylation and changes in histone modifications. Br J Nutr 97:1064–1073

    CAS  PubMed  Google Scholar 

  • Lin SJ, Kaeberlein M, Andalis AA et al (2002) Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration. Nature 418:344–348

    CAS  PubMed  Google Scholar 

  • Lopatina N, Haskell JF, Andrews LG et al (2002) Differential maintenance and de novo methylating activity by three DNA methyltransferases in aging and immortalized fibroblasts. J Cell Biochem 84:324–334

    PubMed  Google Scholar 

  • Lopez-Lluch G, Irusta PM, Navas P et al (2008) Mitochondrial biogenesis and healthy aging. Exp Gerontol 43:813–819

    CAS  PubMed  Google Scholar 

  • Marutha Ravindran CR, Ticku MK (2004) Changes in methylation pattern of NMDA receptor NR2B gene in cortical neurons after chronic ethanol treatment in mice. Brain Res Mol Brain Res 121:19–27

    CAS  PubMed  Google Scholar 

  • Mathers JC, Ford D (2009) Nutrition, epigenetics and aging. In: Friso S, Choi SW (eds) Nutrients and epigenetics. CRC, Boca Raton, pp 175–206

  • McCay CM, Crowell MF, Maynard LA (1935) The effect of retarded growth upon the length of life span and upon the ultimate body size. J Nutr 10:63–79

    CAS  Google Scholar 

  • Messaoudi I, Warner J, Fischer M et al (2006) Delay of T cell senescence by caloric restriction in aged long-lived nonhuman primates. Proc Natl Acad Sci USA 103:19448–19453

    CAS  PubMed  Google Scholar 

  • Messaoudi I, Fischer M, Warner J et al (2008) Optimal window of caloric restriction onset limits its beneficial impact on T-cell senescence in primates. Aging Cell 7:908–919

    CAS  PubMed  Google Scholar 

  • Meyer TE, Kovacs SJ, Ehsani AA et al (2006) Long-term caloric restriction ameliorates the decline in diastolic function in humans. J Am Coll Cardiol 47:398–402

    CAS  PubMed  Google Scholar 

  • Michaud EJ, van Vugt MJ, Bultman SJ et al (1994) Differential expression of a new dominant agouti allele (Aiapy) is correlated with methylation state and is influenced by parental lineage. Genes Dev 8:1463–1472

    CAS  PubMed  Google Scholar 

  • Miyamura Y, Tawa R, Koizumi A et al (1993) Effects of energy restriction on age-associated changes of DNA methylation in mouse liver. Mutat Res 295:63–69

    CAS  PubMed  Google Scholar 

  • Moreno FS, SW T, Naves MM et al (2002) Inhibitory effects of beta-carotene and vitamin a during the progression phase of hepatocarcinogenesis involve inhibition of cell proliferation but not alterations in DNA methylation. Nutr Cancer 44:80–88

    CAS  PubMed  Google Scholar 

  • Myzak MC, Ho E, Dashwood RH (2006) Dietary agents as histone deacetylase inhibitors. Mol Carcinog 45:443–446

    CAS  PubMed  Google Scholar 

  • Narita M, Narita M, Krizhanovsky V et al (2006) A novel role for high-mobility group a proteins in cellular senescence and heterochromatin formation. Cell 126:503–514

    CAS  PubMed  Google Scholar 

  • Nisoli E, Tonello C, Cardile A et al (2005) Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science 310:314–317

    CAS  PubMed  Google Scholar 

  • Oberdoerffer P, Michan S, McVay M et al (2008) SIRT1 redistribution on chromatin promotes genomic stability but alters gene expression during aging. Cell 135:907–918

    CAS  PubMed  Google Scholar 

  • O'Hagan HM, Mohammad HP, Baylin SB (2008) Double strand breaks can initiate gene silencing and SIRT1-dependent onset of DNA methylation in an exogenous promoter CpG island. PLoS Genet 4:e1000155

    PubMed  Google Scholar 

  • Olthof MR, Hollman PC, Zock PL et al (2001) Consumption of high doses of chlorogenic acid, present in coffee, or of black tea increases plasma total homocysteine concentrations in humans. Am J Clin Nutr 73:532–538

    CAS  PubMed  Google Scholar 

  • Oren M (2003) Decision making by p53: life, death and cancer. Cell Death Differ 10:431–442

    CAS  PubMed  Google Scholar 

  • Ota H, Tokunaga E, Chang K et al (2006) Sirt1 inhibitor, Sirtinol, induces senescence-like growth arrest with attenuated Ras-MAPK signaling in human cancer cells. Oncogene 25:176–185

    CAS  PubMed  Google Scholar 

  • Panza F, Solfrizzi V, Colacicco AM et al (2004) Mediterranean diet and cognitive decline. Public Health Nutr 7:959–963

    CAS  PubMed  Google Scholar 

  • Park SK, Prolla TA (2005) Gene expression profiling studies of aging in cardiac and skeletal muscles. Cardiovasc Res 66:205–212

    CAS  PubMed  Google Scholar 

  • Pruitt K, Zinn RL, Ohm JE et al (2006) Inhibition of SIRT1 reactivates silenced cancer genes without loss of promoter DNA hypermethylation. PLoS Genet 2:e40

    PubMed  Google Scholar 

  • Pufulete M, Al-Ghnaniem R, Leather AJ et al (2003) Folate status, genomic DNA hypomethylation, and risk of colorectal adenoma and cancer: a case control study. Gastroenterology 124:1240–1248

    CAS  PubMed  Google Scholar 

  • Pufulete M, Al-Ghnaniem R, Rennie JA et al (2005) Influence of folate status on genomic DNA methylation in colonic mucosa of subjects without colorectal adenoma or cancer. Br J Cancer 92:838–842

    CAS  PubMed  Google Scholar 

  • Rampersaud GC, Kauwell GP, Hutson AD et al (2000) Genomic DNA methylation decreases in response to moderate folate depletion in elderly women. Am J Clin Nutr 72:998–1003

    CAS  PubMed  Google Scholar 

  • Rasbach KA, Schnellmann RG (2008) Isoflavones promote mitochondrial biogenesis. J Pharmacol Exp Ther 325:536–543

    CAS  PubMed  Google Scholar 

  • Rine J, Strathern JN, Hicks JB et al (1979) A suppressor of mating-type locus mutations in Saccharomyces cerevisiae: evidence for and identification of cryptic mating-type loci. Genetics 93:877–901

    CAS  PubMed  Google Scholar 

  • Rodriguez J, Vives L, Jorda M et al (2008) Genome-wide tracking of unmethylated DNA Alu repeats in normal and cancer cells. Nucleic Acids Res 36:770–784

    CAS  PubMed  Google Scholar 

  • Rogina B, Helfand SL (2004) Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc Natl Acad Sci USA 101:15998–16003

    CAS  PubMed  Google Scholar 

  • Ross MH (1961) Length of life and nutrition in the rat. J Nutr 75:197–210

    CAS  PubMed  Google Scholar 

  • Rowling MJ, McMullen MH, Schalinske KL (2002) Vitamin A and its derivatives induce hepatic glycine N-methyltransferase and hypomethylation of DNA in rats. J Nutr 132:365–369

    CAS  PubMed  Google Scholar 

  • Sarg B, Koutzamani E, Helliger W et al (2002) Postsynthetic trimethylation of histone H4 at lysine 20 in mammalian tissues is associated with aging. J Biol Chem 277:39195–39201

    CAS  PubMed  Google Scholar 

  • Schilling MM, Oeser JK, Boustead JN et al (2006) Gluconeogenesis: re-evaluating the FOXO1-PGC-1alpha connection. Nature 443:E10–E11

    CAS  PubMed  Google Scholar 

  • Sequeira J, Boily G, Bazinet S et al (2008) sirt1-null mice develop an autoimmune-like condition. Exp Cell Res 314:3069–3074

    CAS  PubMed  Google Scholar 

  • Shimokawa I, Higami Y, Hubbard GB et al (1993) Diet and the suitability of the male Fischer 344 rat as a model for aging research. J Gerontol 48:B27–B32

    CAS  PubMed  Google Scholar 

  • Sinclair DA, Guarente L (1997) Extrachromosomal rDNA circles–a cause of aging in yeast. Cell 91:1033–1042

    CAS  PubMed  Google Scholar 

  • Sirchia SM, Ren M, Pili R et al (2002) Endogenous reactivation of the RARbeta2 tumor suppressor gene epigenetically silenced in breast cancer. Cancer Res 62:2455–2461

    CAS  PubMed  Google Scholar 

  • Smeal T, Claus J, Kennedy B et al (1996) Loss of transcriptional silencing causes sterility in old mother cells of S. cerevisiae. Cell 84:633–642

    CAS  PubMed  Google Scholar 

  • Sreekumar R, Unnikrishnan J, Fu A et al (2002) Effects of caloric restriction on mitochondrial function and gene transcripts in rat muscle. Am J Physiol Endocrinol Metab 283:E38–E43

    CAS  PubMed  Google Scholar 

  • Stempak JM, Sohn KJ, Chiang EP et al (2005) Cell and stage of transformation-specific effects of folate deficiency on methionine cycle intermediates and DNA methylation in an in vitro model. Carcinogenesis 26:981–990

    CAS  PubMed  Google Scholar 

  • Tissenbaum HA, Guarente L (2001) Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature 410:227–230

    CAS  PubMed  Google Scholar 

  • Trichopoulou A, Orfanos P, Norat T et al (2005) Modified Mediterranean diet and survival: EPIC-elderly prospective cohort study. BMJ 330:991

    PubMed  Google Scholar 

  • Vaquero A, Scher M, Lee D et al (2004) Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin. Mol Cell 16:93–105

    CAS  PubMed  Google Scholar 

  • Vaquero A, Scher M, Erdjument-Bromage H et al (2007) SIRT1 regulates the histone methyl-transferase SUV39H1 during heterochromatin formation. Nature 450:440–444

    CAS  PubMed  Google Scholar 

  • Vega RB, Huss JM, Kelly DP (2000) The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor alpha in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes. Mol Cell Biol 20:1868–1876

    CAS  PubMed  Google Scholar 

  • Villeponteau B (1997) The heterochromatin loss model of aging. Exp Gerontol 32:383–394

    CAS  PubMed  Google Scholar 

  • Walle T, Hsieh F, DeLegge MH et al (2004) High absorption but very low bioavailability of oral resveratrol in humans. Drug Metab Dispos 32:1377–1382

    CAS  PubMed  Google Scholar 

  • Wallwork JC, Duerre JA (1985) Effect of zinc deficiency on methionine metabolism, methylation reactions and protein synthesis in isolated perfused rat liver. J Nutr 115:252–262

    CAS  PubMed  Google Scholar 

  • Wasson GR, McGlynn AP, McNulty H et al (2006) Global DNA and p53 region-specific hypomethylation in human colonic cells is induced by folate depletion and reversed by folate supplementation. J Nutr 136:2748–2753

    CAS  PubMed  Google Scholar 

  • Waterland RA, Jirtle RL (2003) Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol Cell Biol 23:5293–5300

    CAS  PubMed  Google Scholar 

  • Waterland RA, Travisano M, Tahiliani KG (2007) Diet-induced hypermethylation at agouti viable yellow is not inherited transgenerationally through the female. Faseb J 21:3380–3385

    CAS  PubMed  Google Scholar 

  • Weindruch R, Walford RL (1982) Dietary restriction in mice beginning at 1 year of age: effect on life-span and spontaneous cancer incidence. Science 215:1415–1418

    CAS  PubMed  Google Scholar 

  • Weindruch R, Walford RL, Fligiel S et al (1986) The retardation of aging in mice by dietary restriction: longevity, cancer, immunity and lifetime energy intake. J Nutr 116:641–654

    CAS  PubMed  Google Scholar 

  • Willcox DC, Willcox BJ, Todoriki H et al (2006) Caloric restriction and human longevity: what can we learn from the Okinawans? Biogerontology 7:173–177

    PubMed  Google Scholar 

  • Wilson VL, Jones PA (1983) DNA methylation decreases in aging but not in immortal cells. Science 220:1055–1057

    CAS  PubMed  Google Scholar 

  • Wu Z, Puigserver P, Andersson U et al (1999) Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98:115–124

    CAS  PubMed  Google Scholar 

  • Yang AS, Estecio MR, Doshi K et al (2004) A simple method for estimating global DNA methylation using bisulfite PCR of repetitive DNA elements. Nucleic Acids Res 32:e38

    PubMed  Google Scholar 

  • Yu BP, Masoro EJ, Murata I et al (1982) Life span study of SPF Fischer 344 male rats fed ad libitum or restricted diets: longevity, growth, lean body mass and disease. J Gerontol 37:130–141

    CAS  PubMed  Google Scholar 

  • Zainal TA, Oberley TD, Allison DB et al (2000) Caloric restriction of rhesus monkeys lowers oxidative damage in skeletal muscle. Faseb J 14:1825–1836

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dianne Ford.

About this article

Cite this article

Wakeling, L.A., Ions, L.J. & Ford, D. Could Sirt1-mediated epigenetic effects contribute to the longevity response to dietary restriction and be mimicked by other dietary interventions?. AGE 31, 327–341 (2009). https://doi.org/10.1007/s11357-009-9104-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-009-9104-5

Keywords

Navigation