Skip to main content

Advertisement

Log in

Neurobiology of the aging dog

  • Published:
AGE Aims and scope Submit manuscript

Abstract

Aged canines naturally accumulate several types of neuropathology that may have links to cognitive decline. On a gross level, significant cortical atrophy occurs with age along with an increase in ventricular volume based on magnetic resonance imaging studies. Microscopically, there is evidence of select neuron loss and reduced neurogenesis in the hippocampus of aged dogs, an area critical for intact learning and memory. The cause of neuronal loss and dysfunction may be related to the progressive accumulation of toxic proteins, oxidative damage, cerebrovascular pathology, and changes in gene expression. For example, aged dogs naturally accumulate human-type beta-amyloid peptide, a protein critically involved with the development of Alzheimer’s disease in humans. Further, oxidative damage to proteins, DNA/RNA and lipids occurs with age in dogs. Although less well explored in the aged canine brain, neuron loss, and cerebrovascular pathology observed with age are similar to human brain aging and may also be linked to cognitive decline. Interestingly, the prefrontal cortex appears to be particularly vulnerable early in the aging process in dogs and this may be reflected in dysfunction in specific cognitive domains with age.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Akiyama H, Barger S, Barnum S, Bradt B, Bauer J, Cole GM, Cooper NR, Eikelenboom P, Emmerling M, Fiebich BL, Finch CE, Frautschy S, Griffin WST, Hampel H, Hull M, Landreth G, Lue L-F, Mrak R, Mackenzie IR, McGeer PL, O’Banion MK, Pachter J, Pasinetti G, Plata-Salaman C, Rogers J, Rydel R, Shen Y, Streit W, Strohmeyer R, Tooyoma I, Van Muiswinkel FL, Veerhuis R, Walker D, Webster S, Wegrzyniak B, Wenk G, Wyss-Coray T (2000) Inflammation and Alzheimer’s disease: Neuroinflammation Working Group. Neurobiol Aging 21:383–421

    Article  PubMed  CAS  Google Scholar 

  • Albert RE, Benjamin SA, Shukla R (1994) Life span and cancer mortality in the beagle dog and humans. Mech Ageing Dev 74:149–159

    Article  PubMed  CAS  Google Scholar 

  • Ames BN, Shigenaga MK, Hagen TM (1993) Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci USA 90:7915–7922

    Article  PubMed  CAS  Google Scholar 

  • Anderson AJ, Ruehl WW, Fleischmann LK, Stenstrom K, Entriken TL, Cummings BJ (2000) DNA damage and apoptosis in the aged canine brain: relationship to Ab deposition in the absence of neuritic pathology. Prog Neuropsychopharmacol Biol Psychiatry 24:787–799

    Article  PubMed  CAS  Google Scholar 

  • Araujo JA, Landsberg GM, Milgram NW, Miolo A (2008) Improvement of short-term memory performance in aged beagles by a nutraceutical supplement containing phosphatidylserine, Ginkgo biloba, vitamin E, and pyridoxine. Can Vet J 49:379–385

    PubMed  CAS  Google Scholar 

  • Attems J (2005) Sporadic cerebral amyloid angiopathy: pathology, clinical implications, and possible pathomechanisms. Acta Neuropathol 110:345–359

    Article  PubMed  CAS  Google Scholar 

  • Attems J, Jellinger KA, Lintner F (2005) Alzheimer’s disease pathology influences severity and topographical distribution of cerebral amyloid angiopathy. Acta Neuropathol 110:222–231

    Article  PubMed  Google Scholar 

  • Azizeh BY, Head E, Ibrahim MA, Torp R, Tenner AJ, Kim RC, Lott IT, Cotman CW (2000) Molecular dating of senile plaques in aged down’s syndrome and canine brains. Exp Neurol 163:111–122

    Article  PubMed  CAS  Google Scholar 

  • Ballard CG, Greig NH, Guillozet-Bongaarts AL, Enz A, Darvesh S (2005) Cholinesterases: roles in the brain during health and disease. Curr Alzheimer Res 2:307–318

    Article  PubMed  CAS  Google Scholar 

  • Bernedo V, Insua D, Suarez ML, Santamarina G, Sarasa M, Pesini P (2009) Beta-amyloid cortical deposits are accompanied by the loss of serotonergic neurons in the dog. J Comp Neurol 513:417–429

    Article  PubMed  CAS  Google Scholar 

  • Blalock EM, Geddes JW, Chen KC, Porter NM, Markesbery WR, Landfield PW (2004) Incipient Alzheimer’s disease: microarray correlation analyses reveal major transcriptional and tumor suppressor responses. Proc Natl Acad Sci USA 101:2173–2178

    Article  PubMed  CAS  Google Scholar 

  • Bobik M, Thompson T, Russell MJ (1994) Amyloid deposition in various breeds of dogs. Society for Neuroscience Abstracts 20 172

  • Bobinski M, Wegiel J, Tarnawski M, Bobinski M, Reisberg B, de Leon MJ, Miller DC, Wisniewski HM (1997) Relationships between regional neuronal loss and neurofibrillary changes in the hippocampal formation and duration and severity of Alzheimer disease. J Neuropathol Exp Neurol 56:414–420

    Article  PubMed  CAS  Google Scholar 

  • Borras D, Pumarola M, Ferrer I (2000) Neuronal nuclear DNA fragmentation in the aged canine brain: apoptosis or nuclear DNA fragility? Acta Neuropathol 99:402–408

    Article  PubMed  CAS  Google Scholar 

  • Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82:239–259

    Article  PubMed  CAS  Google Scholar 

  • Braak H, Braak E, Bohl J (1993) Staging of Alzheimer-related cortical destruction. Review in Clin Neurosci 33:403–408

    CAS  Google Scholar 

  • Braunmuhl A (1956) Kongophile angiopathie und senile plaques bei greisen hunden. Arch Psychiatr Nervenkr 194:395–414

    Article  Google Scholar 

  • Brown JP, Couillard-Despres S, Cooper-Kuhn CM, Winkler J, Aigner L, Kuhn HG (2003) Transient expression of doublecortin during adult neurogenesis. J Comp Neurol 467:1–10

    Article  PubMed  CAS  Google Scholar 

  • Butterfield DA (2004) Proteomics: a new approach to investigate oxidative stress in Alzheimer’s disease brain. Brain Res 1000:1–7

    Article  PubMed  CAS  Google Scholar 

  • Butterfield DA, Sultana R (2007) Redox proteomics identification of oxidatively modified brain proteins in Alzheimer’s disease and mild cognitive impairment: insights into the progression of this dementing disorder. J Alzheimers Dis 12:61–72

    PubMed  CAS  Google Scholar 

  • Butterfield DA, Reed T, Newman SF, Sultana R (2007) Roles of amyloid beta-peptide-associated oxidative stress and brain protein modifications in the pathogenesis of Alzheimer’s disease and mild cognitive impairment. Free Radic Biol Med 43:658–677

    Article  PubMed  CAS  Google Scholar 

  • Coffey CE, Lucke JF, Saxton JA, Ratcliff G, Unitas LJ, Billig B, Bryan RN (1998) Sex differences in brain aging: a quantitative magnetic resonance imaging study. Arch Neurol 55:169–179

    Article  PubMed  CAS  Google Scholar 

  • Colle M-A, Hauw J-J, Crespeau F, Uchiara T, Akiyama H, Checler F, Pageat P, Duykaerts C (2000) Vascular and parenchymal Ab deposition in the aging dog: correlation with behavior. Neurobiol Aging 21:695–704

    Article  CAS  Google Scholar 

  • Cooley DM, Schlittler DL, Glickman LT, Hayek M, Waters DJ (2003) Exceptional longevity in pet dogs is accompanied by cancer resistance and delayed onset of major diseases. J Gerontol A Biol Sci Med Sci 58:B1078–B1084

    Article  PubMed  Google Scholar 

  • Cotman CW, Head E (2008) The canine (dog) model of human aging and disease: dietary, environmental and immunotherapy approaches. J Alzheimers Dis 15:685–707

    PubMed  CAS  Google Scholar 

  • Cotman CW, Head E, Muggenburg BA, Zicker S, Milgram NW (2002) Brain aging in the canine: a diet enriched in antioxidants reduces cognitive dysfunction. Neurobiol Aging 23:809–818

    Article  PubMed  CAS  Google Scholar 

  • Cummings BJ, Head E, Afagh AJ, Milgram NW, Cotman CW (1996a) Beta-amyloid accumulation correlates with cognitive dysfunction in the aged canine. Neurobiol Learn Mem 66:11–23

    Article  PubMed  CAS  Google Scholar 

  • Cummings BJ, Head E, Ruehl WW, Milgram NW, Cotman CW (1996b) The canine as an animal model of human aging and dementia. Neurobiol Aging 17:259–268

    Article  PubMed  CAS  Google Scholar 

  • Cummings BJ, Head E, Ruehl W, Milgram NW, Cotman CW (1996c) The canine as an animal model of human aging and dementia. Neurobiol Aging 17:259–268

    Article  PubMed  CAS  Google Scholar 

  • Cummings BJ, Head E, Ruehl WW, Milgram NW, Cotman CW (1996d) Beta-amyloid accumulation correlates with cognitive dysfunction in the aged canine. Neurobiol Learn Mem 66:11–23

    Article  PubMed  CAS  Google Scholar 

  • Deane R, Zlokovic BV (2007) Role of the blood-brain barrier in the pathogenesis of Alzheimer’s disease. Curr Alzheimer Res 4:191–197

    Article  PubMed  CAS  Google Scholar 

  • Ding Q, Keller JN (2001) Proteosomes and proteosome inhibition in the central nervous system. Free Radic Biol Med 31:574–584

    Article  PubMed  CAS  Google Scholar 

  • Ding Q, Dimayuga E, Keller JN (2007) Oxidative damage, protein synthesis, and protein degradation in Alzheimer’s disease. Curr Alzheimer Res 4:73–79

    Article  PubMed  CAS  Google Scholar 

  • Du AT, Schuff N, Chao LL, Kornak J, Ezekiel F, Jagust WJ, Kramer JH, Reed BR, Miller BL, Norman D, Chui HC, Weiner MW (2005) White matter lesions are associated with cortical atrophy more than entorhinal and hippocampal atrophy. Neurobiol Aging 26:553–559

    Article  PubMed  Google Scholar 

  • Eriksson PS, Perfilieva E, Bjork-Eriksson T, Alborn AM, Nordborg C, Peterson DA, Gage FH (1998) Neurogenesis in the adult human hippocampus. Nat Med 4:1313–1317

    Article  PubMed  CAS  Google Scholar 

  • Erraji-Benchekroun L, Underwood MD, Arango V, Galfalvy H, Pavlidis P, Smyrniotopoulos P, Mann JJ, Sibille E (2005) Molecular aging in human prefrontal cortex is selective and continuous throughout adult life. Biol Psychiatry 57:549–558

    Article  PubMed  CAS  Google Scholar 

  • Ezekiel F, Chao L, Kornak J, Du AT, Cardenas V, Truran D, Jagust W, Chui H, Miller B, Yaffe K, Schuff N, Weiner M (2004) Comparisons between global and focal brain atrophy rates in normal aging and Alzheimer disease: boundary shift integral versus tracing of the entorhinal cortex and hippocampus. Alzheimer Dis Assoc Disord 18:196–201

    PubMed  Google Scholar 

  • Frackowiak J, Mazur-Kolecka B, Wisniewski HM, Potempska A, Carroll RT, Emmerling MR, Kim KS (1995) Secretion and accumulation of Alzheimer’s beta-protein by cultured vascular smooth muscle cells from old and young dogs. Brain Res 676:225–230

    Article  PubMed  CAS  Google Scholar 

  • Galis F, Van der Sluijs I, Van Dooren TJ, Metz JA, Nussbaumer M (2007) Do large dogs die young? J Exp Zoolog B Mol Dev Evol 308:119–126

    Article  Google Scholar 

  • Giaccone G, Verga L, Finazzi M, Pollo B, Tagliavini F, Frangione B, Bugiani O (1990) Cerebral preamyloid deposits and congophilic angiopathy in aged dogs. Neurosci Lett 114:178–183

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Soriano J, Marin GP, Contreras-Rodriguez J, Martinez-Sainz P, Rodriguez-Veiga E (2001) Age-related changes in the ventricular system of the dog brain. Ann Anat 183:283–291

    Article  PubMed  CAS  Google Scholar 

  • Greer KA, Canterberry SC, Murphy KE (2007) Statistical analysis regarding the effects of height and weight on life span of the domestic dog. Res Vet Sci 82:208–214

    Article  PubMed  Google Scholar 

  • Head E, Callahan H, Muggenburg BA, Cotman CW, Milgram NW (1998) Visual-discrimination learning ability and beta-amyloid accumulation in the dog. Neurobiol Aging 19:415–425

    Article  PubMed  CAS  Google Scholar 

  • Head E, McCleary R, Hahn FF, Milgram NW, Cotman CW (2000) Region-specific age at onset of beta-amyloid in dogs. Neurobiol Aging 21:89–96

    Article  PubMed  CAS  Google Scholar 

  • Head E, Liu J, Hagen TM, Muggenburg BA, Milgram NW, Ames BN, Cotman CW (2002) Oxidative damage increases with age in a canine model of human brain aging. J Neurochem 82:375–381

    Article  PubMed  CAS  Google Scholar 

  • Head E, Corrada MM, Kahle-Wrobleski K, Kim RC, Sarsoza F, Goodus M, Kawas CH (2009) Synaptic proteins, neuropathology and cognitive status in the oldest-old. Neurobiol Aging 30(7):1125–1134

    Article  PubMed  CAS  Google Scholar 

  • Head E, Pop V, Vasilevko V, Hill M, Saing T, Sarsoza F, Nistor M, Christie LA, Milton S, Glabe C, Barrett E, Cribbs D (2008) A two-year study with fibrillar beta-amyloid (Abeta) immunization in aged canines: effects on cognitive function and brain Abeta. J Neurosci 28:3555–3566

    Article  PubMed  CAS  Google Scholar 

  • Herzig MC, Van Nostrand WE, Jucker M (2006) Mechanism of cerebral beta-amyloid angiopathy: murine and cellular models. Brain Pathol 16:40–54

    Article  PubMed  CAS  Google Scholar 

  • Hwang IK, Yoo KY, Li H, Choi JH, Kwon YG, Ahn Y, Lee IS, Won MH (2007) Differences in doublecortin immunoreactivity and protein levels in the hippocampal dentate gyrus between adult and aged dogs. Neurochem Res 32:1604–1609

    Article  PubMed  CAS  Google Scholar 

  • Hwang IK, Yoon YS, Yoo KY, Li H, Choi JH, Kim DW, Yi SS, Seong JK, Lee IS, Won MH (2008a) Differences in lipid peroxidation and Cu, Zn-superoxide dismutase in the hippocampal CA1 region between adult and aged dogs. J Vet Med Sci 70:273–277

    Article  PubMed  CAS  Google Scholar 

  • Hwang IK, Yoon YS, Yoo KY, Li H, Sun Y, Choi JH, Lee CH, Huh SO, Lee YL, Won MH (2008b) Sustained expression of parvalbumin immunoreactivity in the hippocampal CA1 region and dentate gyrus during aging in dogs. Neurosci Lett 434(1):99–103

    Article  PubMed  CAS  Google Scholar 

  • Hwang IK, Li H, Yoo KY, Choi JH, Lee CH, Chung DW, Kim DW, Seong JK, Yoon YS, Lee IS, Won MH (2008c) Comparison of glutamic acid decarboxylase 67 immunoreactive neurons in the hippocampal CA1 region at various age stages in dogs. Neurosci Lett 431:251–255

    Article  PubMed  CAS  Google Scholar 

  • Hwang IK, Choi JH, Li H, Yoo KY, Kim DW, Lee CH, Yi SS, Seong JK, Lee IS, Yoon YS, Won MH (2008d) Changes in glial fibrillary acidic protein immunoreactivity in the dentate gyrus and hippocampus proper of adult and aged dogs. J Vet Med Sci 70:965–969

    Article  PubMed  Google Scholar 

  • Insua D, Suarez ML, Santamarina G, Sarasa M, Pesini P (2010) Dogs with canine counterpart of Alzheimer’s disease lose noradrenergic neurons. Neurobiol Aging 31(4):625–635

    Article  PubMed  CAS  Google Scholar 

  • Ishihara T, Gondo T, Takahashi M, Uchino F, Ikeda S, Allsop D, Imai K (1991) Immunohistochemical and immunoelectron microscopial characterization of cerebrovascular and senile plaque amyloid in aged dogs’ brains. Brain Res 548:196–205

    Article  PubMed  CAS  Google Scholar 

  • Jiang CH, Tsien JZ, Schultz PG, Hu Y (2001) The effects of aging on gene expression in the hypothalamus and cortex of mice. Proc Natl Acad Sci USA 98:1930–1934

    Article  PubMed  CAS  Google Scholar 

  • Johnstone EM, Chaney MO, Norris FH, Pascual R, Little SP (1991) Conservation of the sequence of the Alzheimer’s disease amyloid peptide in dog, polar bear and five other mammals by cross-species polymerase chain reaction analysis. Brain Res Mol Brain Res 10:299–305

    Article  PubMed  CAS  Google Scholar 

  • Keller JN, Schmitt FA, Scheff SW, Ding Q, Chen Q, Butterfield DA, Markesbery WR (2005) Evidence of increased oxidative damage in subjects with mild cognitive impairment. Neurology 64:1152–1156

    Article  PubMed  CAS  Google Scholar 

  • Kiatipattanasakul W, Nakamura S, Hossain MM, Nakayama H, Uchino T, Shumiya S, Goto N, Doi K (1996) Apoptosis in the aged dog brain. Acta Neuropathol 92:242–248

    Article  PubMed  CAS  Google Scholar 

  • Kiatipattanasakul W, Nakamura S, Kuroki K, Nakayama H, Doi K (1997) Immunohistochemical detection of anti-oxidative stress enzymes in the dog brain. Neuropathology 17:307–312

    Article  Google Scholar 

  • Kiatipattanasakul W, Nakayama H, Nakamura S-I, Doi K (1998) Lectin histochemistry in the aged dog brain. Acta Neuropathol 95:261–268

    Article  PubMed  CAS  Google Scholar 

  • Kimotsuki T, Nagaoka T, Yasuda M, Tamahara S, Matsuki N, Ono K (2005) Changes of magnetic resonance imaging on the brain in beagle dogs with aging. J Vet Med Sci 67:961–967

    Article  PubMed  Google Scholar 

  • Lacor PN, Buniel MC, Chang L, Fernandez SJ, Gong Y, Viola KL, Lambert MP, Velasco PT, Bigio EH, Finch CE, Krafft GA, Klein WL (2004) Synaptic targeting by Alzheimer’s-related amyloid beta oligomers. J Neurosci 24:10191–10200

    Article  PubMed  CAS  Google Scholar 

  • Lee CK, Weindruch R, Prolla TA (2000) Gene-expression profile of the ageing brain in mice. Nat Genet 25:294–297

    Article  PubMed  CAS  Google Scholar 

  • Lovell MA, Markesbery WR (2007a) Oxidative DNA damage in mild cognitive impairment and late-stage Alzheimer’s disease. Nucleic Acids Res 35:7497–7504

    Article  PubMed  CAS  Google Scholar 

  • Lovell MA, Markesbery WR (2007b) Oxidative damage in mild cognitive impairment and early Alzheimer’s disease. J Neurosci Res 85:3036–3040

    Article  PubMed  CAS  Google Scholar 

  • Lovell MA, Markesbery WR (2008) Oxidatively modified RNA in mild cognitive impairment. Neurobiol Dis 29:169–175

    Article  PubMed  CAS  Google Scholar 

  • Lovell MA, Gabbita SP, Markesbery WR (1999) Increased DNA oxidation and decreased levels of repair products in Alzheimer’s disease ventricular CSF. J Neurochem 72:771–776

    Article  PubMed  CAS  Google Scholar 

  • Lowseth LA, Gillett NA, Gerlach RF, Muggenburg BA (1990) The effects of aging on hematology and serum chemistry values in the beagle dog. Vet Clin Path 19:13–19

    Article  Google Scholar 

  • Lu T, Pan Y, Kao S-Y, Li C, Kohane I, Chan J, Yankner BA (2004) Gene regulation and DNA damage in the ageing human brain. Nature 429:883–891

    Article  PubMed  CAS  Google Scholar 

  • Markesbery WR, Lovell MA (2007) Damage to lipids, proteins, DNA, and RNA in mild cognitive impairment. Arch Neurol 64:954–956

    Article  PubMed  Google Scholar 

  • Meltzer CC, Smith G, DeKosky ST, Pollock BG, Mathis CA, Moore RY, Kupfer DJ, Reynolds CF III (1998) Serotonin in aging, late-life depression, and Alzheimer’s disease: the emerging role of functional imaging. Neuropsychopharmacology 18:407–430

    Article  PubMed  CAS  Google Scholar 

  • Milgram NW, Head E, Muggenburg BA, Holowachuk D, Murphey H, Estrada J, Ikeda-Douglas CJ, Zicker SC, Cotman CW (2002) Landmark discrimination learning in the dog: effects of age, an antioxidant fortified diet, and cognitive strategy. Neurosci Biobehav Rev 26:679–695

    Article  PubMed  Google Scholar 

  • Milgram NW, Head E, Zicker SC, Ikeda-Douglas C, Murphey H, Muggenberg BA, Siwak CT, Tapp DP, Lowry SR, Cotman CW (2004) Long-term treatment with antioxidants and a program of behavioral enrichment reduces age-dependent impairment in discrimination and reversal learning in beagle dogs. Exp Gerontol 39:753–765

    Article  PubMed  CAS  Google Scholar 

  • Milgram NW, Head E, Zicker SC, Ikeda-Douglas CJ, Murphey H, Muggenburg B, Siwak C, Tapp D, Cotman CW (2005) Learning ability in aged beagle dogs is preserved by behavioral enrichment and dietary fortification: a two-year longitudinal study. Neurobiol Aging 26:77–90

    Article  PubMed  CAS  Google Scholar 

  • Montine TJ, Beal MF, Cudkowicz ME, O’Donnell H, Margolin RA, McFarland L, Bachrach AF, Zackert WE, Roberts LJ, Morrow JD (1999) Increased CSF F2-isoprostane concentration in probable AD. Neurology 52:562–565

    PubMed  CAS  Google Scholar 

  • Montine TJ, Neely MD, Quinn JF, Beal MF, Markesbery WR, Roberts LJ, Morrow JD (2002) Lipid peroxidation in aging brain and Alzheimer’s disease. Free Radic Biol Med 33:620–626

    Article  PubMed  CAS  Google Scholar 

  • Morris JC, Storandt M, Miller JP, McKeel DW, Price JL, Rubin EH, Berg L (2001) Mild cognitive impairment represents early-stage Alzheimer disease. Arch Neurol 58:397–405

    Article  PubMed  CAS  Google Scholar 

  • Oddo S, Caccamo A, Tran L, Lambert MP, Glabe CG, Klein WL, LaFerla FM (2006) Temporal profile of amyloid-beta (Abeta) oligomerization in an in vivo model of Alzheimer disease. A link between Abeta and tau pathology. J Biol Chem 281:1599–1604

    Article  PubMed  CAS  Google Scholar 

  • Opii WO, Joshi G, Head E, Milgram NW, Muggenburg BA, Klein JB, Pierce WM, Cotman CW, Butterfield DA (2008) Proteomic identification of brain proteins in the canine model of human aging following a long-term treatment with antioxidants and a program of behavioral enrichment: relevance to Alzheimer’s disease. Neurobiol Aging 29:51–70

    Article  PubMed  CAS  Google Scholar 

  • Papaioannou N, Tooten PCJ, van Ederen AM, Bohl JRE, Rofina J, Tsangaris T, Gruys E (2001) Immunohistochemical investigation of the brain of aged dogs. I. Detection of neurofibrillary tangles and of 4-hydroxynonenal protein, an oxidative damage product, in senile plaques. Amyloid: J Protein Folding Disord 8:11–21

    Article  CAS  Google Scholar 

  • Parker HG, Kim LV, Sutter NB, Carlson S, Lorentzen TD, Malek TB, Johnson GS, DeFrance HB, Ostrander EA, Kruglyak L (2004) Genetic structure of the purebred domestic dog. Science 304:1160–1164

    Article  PubMed  CAS  Google Scholar 

  • Patronek GJ, Waters DJ, Glickman LT (1997) Comparative longevity of pet dogs and humans: implications for gerontology research. J Gerontol A Biol Sci Med Sci 52:B171–B178

    Article  PubMed  CAS  Google Scholar 

  • Pekcec A, Baumgartner W, Bankstahl JP, Stein VM, Potschka H (2008) Effect of aging on neurogenesis in the canine brain. Aging Cell 7:368–374

    Article  PubMed  CAS  Google Scholar 

  • Peremans K, Audenaert K, Blanckaert P, Jacobs F, Coopman F, Verschooten F, Van Bree H, Van Heeringen C, Mertens J, Slegers G, Dierckx R (2002) Effects of aging on brain perfusion and serotonin-2A receptor binding in the normal canine brain measured with single photon emission tomography. Prog Neuropsychopharmacol Biol Psychiatry 26:1393–1404

    Article  PubMed  CAS  Google Scholar 

  • Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E (1999) Mild cognitive impairment: clinical characterization and outcome. Arch Neurol 56:303–308

    Article  PubMed  CAS  Google Scholar 

  • Pratico D, Delanty N (2000) Oxidative injury in diseases of the central nervous system: focus on Alzheimer’s disease. Am J Med 109:577–585

    Article  PubMed  CAS  Google Scholar 

  • Pratico D, Lee MY, Trojanowski JQ, Rokach J, Fitzgerald GA (1998) Increased F2-isoprostanes in Alzheimer’s disease: evidence for enhanced lipid peroxidation in vivo. FASEB J 12:1777–1783

    PubMed  CAS  Google Scholar 

  • Pratico D, Clark CM, Liun F, Lee VY-M, Trojanowski JQ (2002) Increase of brain oxidative stress in mild cognitive impairment. Arch Neurol 59:972–976

    Article  PubMed  Google Scholar 

  • Prior R, D’Urso D, Frank R, Prikulis I, Pavloakovic G (1995) Experimental deposition of Alzheimer amyloid beta-protein in canine leptomeningeal vessels. NeuroReport 6:1747–1751

    Article  PubMed  CAS  Google Scholar 

  • Prior R, D’Urso D, Frank R, Prikulis I, Wihl G, Pavlakovic G (1996a) Canine leptomeningeal organ culture: a new experimental model for cerebrovascular beta-amyloidosis. J Neurosci Meth 68:143–148

    CAS  Google Scholar 

  • Prior R, D’Urso D, Frank R, Prikulis I, Pavlakovic G (1996b) Loss of vessel wall viability in cerebral amyloid angiopathy. NeuroReport 7:562

    Article  PubMed  CAS  Google Scholar 

  • Pugliese M, Carrasco JL, Geloso MC, Mascort J, Michetti F, Mahy N (2004) Gamma-aminobutyric acidergic interneuron vulnerability to aging in canine prefrontal cortex. J Neurosci Res 77:913–920

    Article  PubMed  CAS  Google Scholar 

  • Pugliese M, Geloso MC, Carrasco JL, Mascort J, Michetti F, Mahy N (2006) Canine cognitive deficit correlates with diffuse plaque maturation and S100beta (-) astrocytosis but not with insulin cerebrospinal fluid level. Acta Neuropathol 111:519–528

    Article  PubMed  Google Scholar 

  • Pugliese M, Gangitano C, Ceccariglia S, Carrasco JL, Del Fa A, Rodriguez MJ, Michetti F, Mascort J, Mahy N (2007) Canine cognitive dysfunction and the cerebellum: acetylcholinesterase reduction, neuronal and glial changes. Brain Res 1139:85–94

    Article  PubMed  CAS  Google Scholar 

  • Rao MS, Shetty AK (2004) Efficacy of doublecortin as a marker to analyse the absolute number and dendritic growth of newly generated neurons in the adult dentate gyrus. Eur J Neurosci 19:234–246

    Article  PubMed  Google Scholar 

  • Rinaldi P, Polidori MC, Metastasio A, Mariani E, Mattioli P, Cherubini A, Catani M, Cecchetti R, Senin U, MEcocci P (2003) Plasma antioxdiants are similarly depleted in mild cognitive impairment and in Alzheimer’s disease. Neurbiol Aging 24:915–919

    Article  CAS  Google Scholar 

  • Rissman RA, De Blas AL, Armstrong DM (2007) GABA(A) receptors in aging and Alzheimer’s disease. J Neurochem 103:1285–1292

    Article  PubMed  CAS  Google Scholar 

  • Rofina J, van Andel I, van Ederen AM, Papaioannou N, Yamaguchi H, Gruys E (2003) Canine counterpart of senile dementia of the Alzheimer type: amyloid plaques near capillaries but lack of spatial relationship with activated microglia and macrophages. Amyloid 10:86–96

    Article  PubMed  CAS  Google Scholar 

  • Rofina JE, Singh K, Skoumalova-Vesela A, van Ederen AM, van Asten AJ, Wilhelm J, Gruys E (2004) Histochemical accumulation of oxidative damage products is associated with Alzheimer-like pathology in the canine. Amyloid 11:90–100

    Article  PubMed  CAS  Google Scholar 

  • Rofina JE, van Ederen AM, Toussaint MJ, Secreve M, van der Spek A, van der Meer I, Van Eerdenburg FJ, Gruys E (2006) Cognitive disturbances in old dogs suffering from the canine counterpart of Alzheimer’s disease. Brain Res 1069:216–226

    Article  PubMed  CAS  Google Scholar 

  • Rohn TT, Head E (2008) Caspase activation in Alzheimer’s disease: early to rise and late to bed. Rev Neurosci 19:383–393

    Article  PubMed  CAS  Google Scholar 

  • Satou T, Cummings BJ, Head E, Nielson KA, Hahn FF, Milgram NW, Velazquez P, Cribbs DH, Tenner AJ, Cotman CW (1997) The progression of beta-amyloid deposition in the frontal cortex of the aged canine. Brain Res 774:35–43

    Article  PubMed  CAS  Google Scholar 

  • Schliebs R, Arendt T (2006) The significance of the cholinergic system in the brain during aging and in Alzheimer’s disease. J Neural Transm 113:1625–1644

    Article  PubMed  CAS  Google Scholar 

  • Selkoe DJ, Bell DS, Podlisny MB, Price DL, Cork LC (1987) Conservation of brain amyloid proteins in aged mammals and humans with Alzheimer’s disease. Science 235:873–877

    Article  PubMed  CAS  Google Scholar 

  • Shimada A, Kuwamura M, Akawkura T, Umemura T, Takada K, Ohama E, Itakura C (1992a) Topographic relationship between senile plaques and cerebrovascular amyloidosis in the brain of aged dogs. J Vet Med Sci 54:137–144

    Article  PubMed  CAS  Google Scholar 

  • Shimada A, Kuwamura M, Awakura T, Umemura T, Itakura C (1992b) An immunohistochemical and ultrastructural study on age-related astrocytic gliosis in the central nervous system of dogs. J Vet Med Sci 54:29–36

    Article  PubMed  CAS  Google Scholar 

  • Simic G, Kostovic I, Winblad B, Bogdanovic N (1997) Volume and number of neurons of the human hippocampal formation in normal aging and Alzheimer’s disease. J Comp Neurol 379:482–494

    Article  PubMed  CAS  Google Scholar 

  • Siso S, Tort S, Aparici C, Perez L, Vidal E, Pumarola M (2003) Abnormal neuronal expression of the calcium-binding proteins, parvalbumin and calbindin D-28 k, in aged dogs. J Comp Pathol 128:9–14

    Article  PubMed  CAS  Google Scholar 

  • Siwak-Tapp CT, Head E, Muggenburg BA, Milgram NW, Cotman CW (2007) Neurogenesis decreases with age in the canine hippocampus and correlates with cognitive function. Neurobiol Learn Mem 88:249–259

    Article  PubMed  CAS  Google Scholar 

  • Siwak-Tapp CT, Head E, Muggenburg BA, Milgram NW, Cotman CW (2008) Region specific neuron loss in the aged canine hippocampus is reduced by enrichment. Neurobiol Aging 29:521–528

    Article  Google Scholar 

  • Skoumalova A, Rofina J, Schwippelova Z, Gruys E, Wilhelm J (2003a) The role of free radicals in canine counterpart of senile dementia of the Alzheimer type. Exp Gerontol 38:711–719

    Article  PubMed  CAS  Google Scholar 

  • Skoumalova A, Rofina J, Schwippelova Z, Gruys E, Wilhelm J (2003b) The role of free radicals in canine counterpart of senile dementia of the Alzheimer type. Exp Gerontol 38:711–719

    Article  PubMed  CAS  Google Scholar 

  • Smith CD, Carney JM, Starke-Reed PE, Oliver CN, Stadtman ER, Floyd RA, Markesbery WR (1991) Excess brain protein oxidation and enzyme dysfunction in normal aging and in Alzheimer disease. Proc Natl Acad Sci USA 88:10540–10543

    Article  PubMed  CAS  Google Scholar 

  • Smith MA, Sayre LM, Monnier VM, Perry G (1996) Oxidative posttranslational modifications in Alzheimer’s disease. Mol Chem Neuropathol 28:41–48

    Article  PubMed  CAS  Google Scholar 

  • Smith MA, Rottkamp CA, Nunomura A, Raina AK, Perry G (2000) Oxidative stress in Alzheimer’s disease. Biochim Biophys Acta 1502:139–144

    PubMed  CAS  Google Scholar 

  • Stadtman ER (1992) Protein oxidation and aging. Science 257:1220–1224

    Article  PubMed  CAS  Google Scholar 

  • Stadtman ER, Berlett BS (1997) Reactive oxygen-mediated protein oxidation in aging and disease. Chem Res Toxicol 10:485–494

    Article  PubMed  CAS  Google Scholar 

  • Studzinski CM, Araujo JA, Milgram NW (2005) The canine model of human cognitive aging and dementia: pharmacological validity of the model for assessment of human cognitive-enhancing drugs. Prog Neuropsychopharmacol Biol Psychiatry 29:489–498

    Article  PubMed  CAS  Google Scholar 

  • Su M-Y, Head E, Brooks WM, Wang Z, Muggenberg BA, Adam GE, Sutherland RJ, Cotman CW, Nalcioglu O (1998) MR imaging of anatomic and vascular characteristics in a canine model of human aging. Neurobiol Aging 19:479–485

    Article  PubMed  CAS  Google Scholar 

  • Su MY, Tapp PD, Vu L, Chen YF, Chu Y, Muggenburg B, Chiou JY, Chen C, Wang J, Bracco C, Head E (2005) A longitudinal study of brain morphometrics using serial magnetic resonance imaging analysis in a canine model of aging. Prog Neuropsychopharmacol Biol Psychiatry 29:389–397

    Article  PubMed  Google Scholar 

  • Swanson KS, Vester BM, Apanavicius CJ, Kirby NA, Schook LB (2009) Implications of age and diet on canine cerebral cortex transcription. Neurobiol Aging 30(8):1314–1326

    Article  PubMed  Google Scholar 

  • Tapp PD, Siwak CT, Gao FQ, Chiou JY, Black SE, Head E, Muggenburg BA, Cotman CW, Milgram NW, Su MY (2004) Frontal lobe volume, function, and beta-amyloid pathology in a canine model of aging. J Neurosci 24:8205–8213

    Article  PubMed  CAS  Google Scholar 

  • Tapp PD, Head K, Head E, Milgram NW, Muggenburg BA, Su MY (2006) Application of an automated voxel-based morphometry technique to assess regional gray and white matter brain atrophy in a canine model of aging. Neuroimage 29:234–244

    Article  PubMed  Google Scholar 

  • Thal DR, Rub U, Orantes M, Braak H (2002) Phases of A beta-deposition in the human brain and its relevance for the development of AD. Neurology 58:1791–1800

    PubMed  Google Scholar 

  • Torp R, Head E, Cotman CW (2000a) Ultrastructural analyses of beta-amyloid in the aged dog brain: neuronal beta-amyloid is localized to the plasma membrane. Prog Neuro-Psychopharmacol Biol Psychiatry 24:801–810

    Article  CAS  Google Scholar 

  • Torp R, Head E, Milgram NW, Hahn F, Ottersen OP, Cotman CW (2000b) Ultrastructural evidence of fibrillar b-amyloid associated with neuronal membranes in behaviorally characterized aged dog brains. Neuroscience 93:495–506

    Article  Google Scholar 

  • Torp R, Ottersen OP, Cotman CW, Head E (2003) Identification of neuronal plasma membrane microdomains that colocalize beta-amyloid and presenilin: implications for beta-amyloid precursor protein processing. Neuroscience 120:291–300

    Article  PubMed  CAS  Google Scholar 

  • Uchida K, Miyauchi Y, Nakayama H, Goto N (1990) Amyloid angiopathy with cerebral hemorrhage and senile plaque in aged dogs. Nippon Juigaku Zasshi 52:605–611

    PubMed  CAS  Google Scholar 

  • Uchida K, Nakayama H, Goto N (1991) Pathological studies on cerebral amyloid angiopathy, senile plaques and amyloid deposition in visceral organs in aged dogs. J Vet Med Sci 53:1037–1042

    Article  PubMed  CAS  Google Scholar 

  • Uchida K, Tani Y, Uetsuka K, Nakayama H, Goto N (1992) Immunohistochemical studies on canine cerebral amyloid angiopathy and senile plaques. J Vet Med Sci 54:659–667

    Article  PubMed  CAS  Google Scholar 

  • Uchida K, Okuda R, Yamaguchi R, Tateyama S, Nakayama H, Goto N (1993) Double-labeling immunohistochemical studies on canine senile plaques and cerebral amyloid angiopathy. J Vet Med Sci 55:637–642

    Article  PubMed  CAS  Google Scholar 

  • Uchida K, Kuroki K, Yoshino T, Yamaguchi R, Tateyama S (1997) Immunohistochemical study of constituents other than beta-protein in canine senile plaques and cerebral amyloid angiopathy. Acta Neuropathol 93:277–284

    Article  PubMed  CAS  Google Scholar 

  • van Praag H, Schinder AF, Christie BR, Toni N, Palmer TD, Gage FH (2002) Functional neurogenesis in the adult hippocampus. Nature 416:1030–1034

    Article  CAS  Google Scholar 

  • Walker LC (1997) Animal models of cerebral beta-amyloid angiopathy. Brain Res Rev 25:70–84

    Article  PubMed  CAS  Google Scholar 

  • Weindruch R, Kayo T, Lee CK, Prolla TA (2002) Gene expression profiling of aging using DNA microarrays. Mech Ageing Dev 123:177–193

    Article  PubMed  CAS  Google Scholar 

  • West MJ (1993) Regionally specific loss of neurons in the aging human hippocampus. Neurobiol Aging 14:287–293

    Article  PubMed  CAS  Google Scholar 

  • West MJ, Kawas CH, Martin LJ, Troncoso JC (2000) The CA1 region of the human hippocampus is a hot spot in Alzheimer’s disease. Ann NY Acad Sci 908:255–259

    Article  PubMed  CAS  Google Scholar 

  • Westerman MA, Cooper-Blacketer D, Mariash A, Kotilinek L, Kawarabayashi T, Younkin LH, Carlson GA, Younkin SG, Ashe KH (2002) The relationship between Ab and memory in the Tg2576 mouse model of Alzheimer’s disease. J Neurosci 22:1858–1867

    PubMed  CAS  Google Scholar 

  • Wisniewski HM, Johnson AB, Raine CS, Kay WJ, Terry RD (1970) Senile plaques and cerebral amyloidosis in aged dogs. Lab Invest 23:287–296

    PubMed  CAS  Google Scholar 

  • Wisniewski HM, Wegiel J, Morys J, Bancher C, Soltysiak Z, Kim KS (1990) Aged dogs: an animal model to study beta-protein amyloidogenesis. In: Maurer PRK, Beckman H (eds) Alzheimer’s disease. epidemiology, neuropathology, neurochemistry and clinics. Springer, New York, pp 151–167

    Google Scholar 

  • Wisniewski T, Lalowski M, Bobik M, Russell M, Strosznajder J, Frangione B (1996) Amyloid Beta 1–42 deposits do not lead to Alzheimer’s neuritic plaques in aged dogs. Biochem J 313:575–580

    PubMed  CAS  Google Scholar 

  • Yoshino T, Uchida K, Tateyama S, Yamaguchi R, Nakayama H, Goto N (1996) A retrospective study of canine senile plaques and cerebral amyloid angiopathy. Vet Pathol 33:230–234

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth Head.

About this article

Cite this article

Head, E. Neurobiology of the aging dog. AGE 33, 485–496 (2011). https://doi.org/10.1007/s11357-010-9183-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-010-9183-3

Keywords

Navigation