Skip to main content
Log in

Exercise and oxidative stress: Sources of free radicals and their impact on antioxidant systems

  • Published:
AGE Aims and scope Submit manuscript

Abstract

Strenuous exercise is characterized by increased oxygen consumption and the disturbance between intracellular pro-oxidant and antioxidant homeostasis. At lease three biochemical pathways (i.e., mitochondrial electron transport chain, xanthine oxidase, and polymorphoneutrophil) have been identified as potential sources of intracellular free radical generation during exercise. These deleterious reactive oxygen species pose a serious threat to the cellular antioxidant defense system, such as diminished reserves of antioxidant vitamins and glutathione. However, enzymatic and non-enzymatic antioxidants have demonstrated great versitility and adaptability in response to acute and chronic exercise. The delicate balance between pro-oxidants and antioxidants suggests that supplementation with antioxidants may be desirable for physically active individuals under certain physiological conditions by providing a larger protective margin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Halliwell, B., and Gutteridge, J.M.C.: Free Radicals in Biology and Medicine, 2nd ed. Oxford, Clarendon Press, 1989.

    Google Scholar 

  2. Ames, B.N., Shigenaga, M.K., and Hagen, T.M.: Mitochondrial decay in aging. Biochem. Biophys. Acta, 1271: 165–70, 1995.

    PubMed  Google Scholar 

  3. Cannon, J.G., and Blumberg, J.B.: Acute phase immune responses in exercise, in Exercise and Oxygen Toxicity, edited by Sen, C.K., Packer, L., Hanninen, O. New York, Elsevier Science, 1994, pp. 447–79.

    Google Scholar 

  4. Yu, B.P.: Cellular defenses against damage from reactive oxygen species. Physiol. Rev., 74: 139–62, 1994.

    PubMed  CAS  Google Scholar 

  5. Harman, D.: Aging: a theory based on free radical and radiation chemistry. J. Gerontol., 11: 298–300, 1956.

    PubMed  CAS  Google Scholar 

  6. Chance, B., Sies, H., and Boveris, A.: Hydroperoxide metabolism in mammalian organs. Physiol. Rev., 59: 527–605, 1979.

    PubMed  CAS  Google Scholar 

  7. Ji, L.L., and Leeuwenburgh, C.: Glutathione and exercise, in Pharmacology in Exercise and Sports, edited by Somani, S. New York, CRC Press, 1996, pp. 97–123.

    Google Scholar 

  8. Meydani, M., and Evans, W.J.: Free radicals, exercise, and aging, in Free Radical in Aging, edited by Yu, B.P. Boca Raton, CRC Press, 1993, pp. 183–204.

    Google Scholar 

  9. Dillard, C.J.:, Litov, R.E., Savin, W.M., Dumclin E.E., and Tapple, A.L.: Effect of exercise, vitamin E, and ozone on pulmonary function and lipid peroxidation. 0J. Appl. Physiol., 45: 927–32, 1978.

    CAS  Google Scholar 

  10. Salminen, A., and Vihko, V.: Endurance training reduces the susceptibility of mouse skeletal muscle to lipid peroxidation in vitro. Acta Physiol. Scand., 117: 109–13, 1983.

    PubMed  CAS  Google Scholar 

  11. Jenkins, R.R.: Free radical chemistry: relationship to exercise. Sport Med., 5: 156–70, 1988.

    CAS  Google Scholar 

  12. Sjodin, B., Westing, H., and Apple, S.: Biochemical mechanisms for oxygen free radical formation during exercise. Sports Med., 10: 236–54, 1990.

    Article  PubMed  CAS  Google Scholar 

  13. Ji, L.L.: Exercise and oxidative stress: role of the cellular antioxidant systems, in Exercise Sport Science Reviews, edited by Holloszy, J.O. Baltimore, Williams & Wilkins, 1995, pp. 135–66.

    Google Scholar 

  14. Sen, C.K.: Oxidants and antioxidants in exercise. J. Appl. Physiol. 79: 675–86, 1995.

    PubMed  CAS  Google Scholar 

  15. Davies, K.J.A., Quintanilha, T.A., Brooks, G.A., and Packer, L.: Free radical and tissue damage produced by exercise. Biochem. Biophys. Res. Commun., 107: 1198–205, 1982.

    Article  PubMed  CAS  Google Scholar 

  16. Salo, D.C., Donovan, C.M., and Davies, K.J.A.: HSP70 and other possible heat shock or oxidative stress proteins are induced in skeletal muscle, heart, and liver during exercise. Free Radic. Biol. Med., 11: 239–46, 1991.

    Article  PubMed  CAS  Google Scholar 

  17. Kumar, C.T., Reddy, V.K., Prasad, M., Thyagaraju, K., and Reddanna, P.: Dietary supplementation of vitamin E protects heart tissue from exercise-induced oxidative stress. Mol. Cell. Biochem., 111: 109–15, 1992.

    Article  PubMed  CAS  Google Scholar 

  18. Somani, S.M., and Arroyo, C.M.: Exercise training generates ascorbate free radical in rat heart. Ind. J. Physiol. Pharmacol., 39: 323–9, 1995.

    CAS  Google Scholar 

  19. Jackson, M.J., Edwards, R.H.T., and Symons M.C.R.: Electron spin resonance studies of intact mammalian skeletal muscle. Biochem. Biophys. Acta, 847: 185–90, 1985.

    Article  PubMed  CAS  Google Scholar 

  20. Reid, M.B., Stokic, D.S., Koch, S.M., Khawli, F.A., Lois, A.A.: N-acetylcysteine inhibits muscle fatigue in humans. J. Clin. Invest., 94: 2468–74, 1994

    Article  PubMed  CAS  Google Scholar 

  21. Ji, L.L., and Mitchell, E.W.: Effects of adriamycin on heart mitochondrial function in rested and exercised rats. Biochem. Pharmacol., 47: 877–85, 1994.

    Article  PubMed  CAS  Google Scholar 

  22. Ji, L.L., Stratman, F.W., and Lardy, H.A.: Enzymatic down regulation with exercise in rat skeletal muscle. Arch. Biochem. Biophys., 263: 137–49, 1988.

    Article  PubMed  CAS  Google Scholar 

  23. Chandwaney, R., and Ji, L.L. Exercise training attenuates muscle mitochondrial damage by oxygen free radicals. Med Sci. Sports Exerc., 24: S17, 1992.

    Google Scholar 

  24. Leichtweis, S., Leeuwenburgh, C., Fiebig, R., Parmelee, D., Yu, X.X., and Ji, L.L.: Rigorous swim training deteriorates mitochondrial function in rat heart. Med Sci. Sports Exerc., 26: S69, 1994.

    Google Scholar 

  25. Higuchi, M., Cartier, L.J., Chen, M., and Holloszy, J.O.: Superoxide dismutase and catalase in skeletal muscle: adaptive response to exercise. J.Gerontol., 40: 281–6, 1985.

    Article  PubMed  CAS  Google Scholar 

  26. Ji, L.L., Stratman, F.W., and Lardy, H.A.: Antioxidant enzyme systems in rat liver, and skeletal muscle: influences of selenium deficiency, chronic training and acute exercise. Arch. Biochem. Biophys., 263: 150–60, 1988.

    Article  PubMed  CAS  Google Scholar 

  27. Alessio, H.M., and Goldfarb, A.H.: MDA content increases in fast-and slow-twitch skeletal muscle with intensity of exercise in a rat. Am. J. Physiol., 255: C874–7, 1988.

    PubMed  CAS  Google Scholar 

  28. Kanter, M.M., Nolte, L.A., and Holloszy, J.O.: Effect of an antioxidant vitamin mixture on lipid peroxidation at rest and postexercise. J. Appl. Physiol., 74: 965–9, 1993.

    PubMed  CAS  Google Scholar 

  29. Ji, L.L., Fu, R.G., and Mitchell, E.: Glutathione and antioxidant enzyme in skeletal muscle: effect of fiber type and exercise intensity. J. Appl. Physiol., 73: 1854–9, 1992.

    PubMed  CAS  Google Scholar 

  30. Pincemail, J., Camus, G., Roesgen, A., Dreezen, E., Bertrand, Y., Lismonde, M., Deby-Dupont, G., and Deby, C.: Exercise induces pentane production and neutrophil activation in humans: effect of propanolol. Eur. J. Appl. Physiol. Occ. Physiol., 61: 319–22, 1990.

    Article  CAS  Google Scholar 

  31. Simpson, P.J., and Lucchesi, B.R.: Free radicals and myocardial ischemia and reperfusion injury. J. Lab: Clin. Med., 19: 1195–206, 1987.

    Google Scholar 

  32. Downey, J.M.: Free radicals and their involvement during long-term myocardial ischemia-reperfusion. Annu. Rev. Physiol., 52: 487–504, 1990.

    Article  PubMed  CAS  Google Scholar 

  33. Kuppasamy, P., and Zweier, J.L.: Characterization of free radical generation by xanthine oxidase: evidence for hydroxyl radical generation. J. Biol. Chem., 264: 9880–4, 1989.

    Google Scholar 

  34. Hearse, D.J., Manning, A.S., Downey, J.M., and Yellon, D.M.: Xanthine oxidase: a critical mediator of myocardial injury during ischemia and reperfusion? Acta Physiol. Scand., 548: 65–78, 1986.

    CAS  Google Scholar 

  35. Hellsten, Y.: Xanthine dehydrogenase and purine metabolism in man: with special reference to exercise. Acta Physiol. Scand., 621: 1–73, 1994.

    CAS  Google Scholar 

  36. Norman, B., Sovelli, A., Kaijser, L., and Jansson, E.: ATP breakdown products in human muscle during prolonged exercise to exhaustion. Clin. Physiol., 7: 503–10, 1987.

    PubMed  CAS  Google Scholar 

  37. Hellsten-Westing, Y., Balsom, P.D., Norman, B., and Sjodin, B.: The effect of high-intensity training on purine metabolism in man. Acta Physiol. Scand., 149: 405–12, 1993.

    PubMed  CAS  Google Scholar 

  38. Sahlin, K., Ekberg, K., and Cizinsky, S.: Changes in plasma hypoxanthine and free radical markers during exercise in man. Acta Physiol. Scand., 142: 273–81, 1991.

    Google Scholar 

  39. Radak, Z., Asano, K., Inoue, M., Kizaki, T., Oh-ishi, S., Suzuki, K., Taniguchi, N., and Ohno, H.: Superoxide dismutase derivative reduces oxidative damage in skeletal muscle of rats during exhaustive exercise. J. Appl. Physiol., 79: 129–35, 1995.

    PubMed  CAS  Google Scholar 

  40. Radak, Z., Asano, K., Inoue, M., Kizaki, T., Ohishi, S., Suzuki, K., Taniguchi, N., and Ohno, H.: Superoxide dismutase derivative prevents oxidative damage in liver and kidney of rats induced by exhausting exercise. Eur. J. Appl. Physiol. Occ. Physiol., 72: 189–94, 1996.

    Article  CAS  Google Scholar 

  41. Rasanen, L.A., Wiitanen, P.A.S., Lilius, E.M., Hyyppa, S., and Poso, A.R.: Accumulation of uric acid in plasma after repeated bouts of exercise in the horse. Comp. Biochem. Physiol., 114B: 139–44, 1996.

    CAS  Google Scholar 

  42. Hellsten, Y., Hansson, H.A., Johnson, L., Frandsen, U., and Sjodin, B.: Increased expression of xanthine oxidase acid insulinlike growth factor (IGF-1) immunoreactivity in skeletal muscle after strenuous exercise in humans. Acta Physiol. Scand., 157: 191–7, 1996.

    Article  PubMed  CAS  Google Scholar 

  43. Pyne, D.B.: Regulation of neutrophil function during exercise. Sports Med., 17: 245–58, 1994.

    PubMed  CAS  Google Scholar 

  44. Petrone, W.F., English, D.K., Wong, K., and McCord, J.M.: Free radicals and inflammation: superoxide-dependent activation of a neutrophil chemotactic factor in plasma. Proc. Natl. Acad. Sci. USA, 77: 1159–63, 1980.

    PubMed  CAS  Google Scholar 

  45. Meydani, M., Evans, W., Handelman, G., Fielding, R.A., Meydani, S.N., Fiatarone, M.A., Blumberg, J.B., and Cannon, J.G.: Antioxidant response to exercise-induced oxidative stress and protection by vitamin E. Ann. N.Y. Acad. Sci., 669: 363–4, 1992.

    Article  PubMed  CAS  Google Scholar 

  46. Camus, G., Deby-Dupont, G., Duchateau, J., Deby, C., Pincemail, J., and Lamy, M.: Are similar inflammatory factors involved in strenuous exercise and sepsis? Int. Care Med. 20: 602–10, 1994.

    Article  CAS  Google Scholar 

  47. Hack, V., Strobel, G., Rau, J.P., and Weicker, H.: The effect of maximal exercise on the activity of neutrophil granulocytes in highly trained athletes in a moderate training period. Eur. J. Appl. Physiol. Occ. Physiol., 65: 520–4, 1992.

    Article  CAS  Google Scholar 

  48. Smith, J.A., Gray, A.B., Pyne, D.B., Baker, M.S., Telford, R.D., and Weidemann, M.J.: Moderate exercise triggers both priming and activation of neutrophil subpopulations. Am J. Physiol., 39: R838–45, 1996.

    Google Scholar 

  49. Kim, J.D., McCarter, R.J.M., and Yu, B.P.: Influence of age, exercise, and dietary restriction on oxidative stress in rats. Aging Clin. Exp. Res., 8: 123–9, 1996.

    CAS  Google Scholar 

  50. Somani, S., and Kamimori, G.H.: The effects of exercise on absorption, distribution, metabolism, excretion, and pharmacokinetics of drugs, in Pharmacology in Exercise and Sports, edited by Somani, S. New York, CRC Press, 1996, pp. 1–38.

    Google Scholar 

  51. Godin, D.V., and Wohaieb, S.A.: Nutritional deficiency, starvation, and tissue antioxidant status. Free Radic. Biol. Med., 5: 165–76, 1988.

    Article  PubMed  CAS  Google Scholar 

  52. Leeuwenburgh, C. and Ji, L.L.: Alteration of glutathione and antioxidant status with exercise in unfed and refed rats. J. Nutr., 126: 1833–43, 1996

    PubMed  CAS  Google Scholar 

  53. Harris, E.D.: Regulation of antioxidant enzymes. FASEB J., 6: 2675–83, 1992.

    PubMed  CAS  Google Scholar 

  54. Packer, L., Witt, E.H., and Tritschler, H.J.: a-Lipoic acid as a biological antioxidant. Free Radic. Biol. Med., 19: 227–50, 1995.

    Article  PubMed  CAS  Google Scholar 

  55. Packer, L.: Protective role of vitamin E in biological systems. Am. J. Clin. Nutr., 53: 1050S–5S, 1991.

  56. Gohil, K., Packer, L., Lumen, B., Brooks, G.A., and Terblanche, S.E.: Vitamin E deficiency and vitamin C supplements: exercise and mitochondrial oxidation. J. Appl. Physiol., 60: 1986–91, 1986.

    PubMed  CAS  Google Scholar 

  57. Anzueto, A., Andrade, F.H., Maxwell, L.C., Levine, S.M., Lawrence, R.A., and Jenkenson, S.G.: Diaphragmatic function after resistive breathing in vitamin E-deficient rats. J. Appl. Physiol., 74: 267–71, 1993.

    Article  PubMed  CAS  Google Scholar 

  58. Gohil, K., Rothfuss, L., Lang, J., and Packer, L.: Effect of exercise training on tissue vitamin E and ubiquinone content. J. Appl. Physiol., 63: 1638–41, 1987.

    PubMed  CAS  Google Scholar 

  59. Tiidus, P.M., and Houston, M.E.: Vitamin E status does not affect the responses to exercise training and acute exercise in female rats. J. Nutr., 123: 834–40, 1993.

    PubMed  CAS  Google Scholar 

  60. Aikawa, K.M., Quintanilha, A.T., de Lumen, B.O., Brooks, G.A., and Packer, L.: Exercise endurance training alters vitamin E tissue level and red blood cell hemolysis in rodents. Biosci. Rep., 4: 253–7, 1984.

    Article  PubMed  CAS  Google Scholar 

  61. Packer, L., Almada, A.L., Rothfuss, L.M., and Wilson, D.S.: Modulation of tissue vitamin E levels by physical exercise. Ann. N.Y. Acad. Sci., 570: 311–21, 1989.

    PubMed  CAS  Google Scholar 

  62. Goldfarb, A.H., McIntosh, M.K., Boyer, B.T., and Fatouros, J.: Vitamin E effects on indexes of lipid peroxidation in muscle from DHEA-treated and exercised rats. J. Appl. Physiol., 76: 1630–5, 1994.

    PubMed  CAS  Google Scholar 

  63. Sumida, S., Tanaka, K., Kitao, H., and Nakadomo, F.: Exercise-induced lipid peroxidation and leakage of enzymes before and after vitamin E supplementation. Int. J. Biochem., 21: 835–8, 1989.

    Article  PubMed  CAS  Google Scholar 

  64. Kanter, M.M.: Free radicals and exercise: effects of nutritional antioxidant supplementation, in Exercise and Sport Science Reviews, edited by Holloszy, J.O. Baltimore, Williams and Wilkins, 1995, pp.375–98.

    Google Scholar 

  65. Beyer, R.E.: The role of ascorbate in antioxidant protection of biomembranes: interaction with vitamin E and coenzyme Q. J. Bioenerg. Biomem. 26: 349–58, 1994.

    Article  CAS  Google Scholar 

  66. Niki, E., Kawakami, A., Saito, M., Yamamoto, Y., Tsuchiya, J., and Kamiya, Y.: Effect of phytyl side chain of vitamin E on its antioxidant activity. J. Biol. Chem., 260: 2191–6, 1985.

    PubMed  CAS  Google Scholar 

  67. Bendich, A., and Langseth, L.:. The health effects of vitamin C supplementation: a review. J. Am. Coll. Nutr., 14: 124–36, 1995.

    PubMed  CAS  Google Scholar 

  68. Packer, L., Gohil, K., DeLumen, B., and Terblanche, S.E.: A comparative study on the effects of ascorbic acid deficiency and supplementation on endurance and mitochondrial oxidative capacities in various tissues of the guinea pig. Comp. Biochem. Physiol., 83B: 235–40, 1986.

    CAS  Google Scholar 

  69. Meister, A., and Anderson, M.E.: Glutathione. Annu. Rev. Biochem., 52: 711–60, 1983.

    Article  PubMed  CAS  Google Scholar 

  70. Lu, S., Garcia-Ruiz, A., Kuhlenkamp, C., Ookhtens, M., Salas-Prato, M., and Kaplowitz, N.: Hormonal regulation of glutathione efflux. J. Biol. Chem., 205: 16088–95, 1990.

    Google Scholar 

  71. Lew, H., Pyke, S., and Quintanilha, A.: Changes in the glutathione status of plasma, liver and muscle following exhaustive exercise in rats. FEBS Lett., 185: 262–6, 1985.

    Article  PubMed  CAS  Google Scholar 

  72. Sen, C.K., Marin, E., Kretzschmar, M., and Hanninen, O.: Skeletal muscle and liver glutathione homeostasis in response to training, exercise and immobilization. J. Appl. Physiol. 73: 1265–72, 1992.

    PubMed  CAS  Google Scholar 

  73. Leeuwenburgh, C., and Ji, L.L.: Glutathione depletion in rested and exercised mice: biochemical consequence and adaptation. Arch. Biochem. Biophys., 316: 941–9, 1995.

    Article  PubMed  CAS  Google Scholar 

  74. Ji, L.L., and Fu, R.G.: Responses of glutathione system and antioxidant enzymes to exhaustive exercise and hydroperoxide. J. Appl. Physiol., 72: 549–54, 1992.

    PubMed  CAS  Google Scholar 

  75. Villa, J.G., Collado, P.S., Almar, M.M., and Gonzalez, J.: Changes in the biliary excretion of organic anions following exhaustive exercise in rats. Biochem. Pharmacol., 40: 2519–24, 1990.

    Article  PubMed  CAS  Google Scholar 

  76. Pyke, S., Lew, H., and Quintanilha, A.: Severe depletion in liver glutathione during physical exercise. Biochem. Biophys. Res. Commun., 139: 926–31, 1986.

    Article  PubMed  CAS  Google Scholar 

  77. Durarte, J.A.R., Appell, H.J., Carvalho, F., Bastos, M., and Soares, J.M.: Endothelium-derived oxidative stress may contribute to exercise-induced muscle damage. Int. J. Sports Med., 14: 440–3, 1993.

    Google Scholar 

  78. Leeuwenburgh, C., Leichtweis, S., Hollander, J., Fiebig, R., Gore, M., and Ji, L.L.: Effect of acute exercise on glutathione deficient heart. Mol. Cell. Biochem., 156: 17–24, 1996.

    Article  PubMed  CAS  Google Scholar 

  79. Leeuwenburgh, C., Hollander, J., Leichtweis, S., Griffiths, M., Gore, M., and Ji, L.L.: Adaptations of glutathione antioxidant system to endurance training are tissue and muscle fiber specific. Am. J. Physiol., 272: R383–R369, 1997.

    Google Scholar 

  80. Duthie, G.G., Robertson, J.D., Maughan, R.J., and Morrice, P.C.: Blood antioxidant status and erythrocyte lipid peroxidation following distance running. Arch. Biochem. Biophys., 282: 78–83, 1990.

    Article  PubMed  CAS  Google Scholar 

  81. Leeuwenburgh, C., Fiebig, R., Chandwaney, R., and Ji, L.L.: Aging and exercise training in skeletal muscle: response of glutathione and antioxidant enzyme systems. Am. J. Physiol., 267: R439–45, 1994.

    PubMed  CAS  Google Scholar 

  82. Ji, L.L., Fu, R.G., Mitchell, E.W., Waldrop, T.G., and Swartz, H.A.: Cardiac hypertrophy alters myocardial response to ischemia and reperfusion in vivo. Acta Physiol. Scand., 151: 279–90, 1994.

    PubMed  CAS  Google Scholar 

  83. Kihlstrom, M.: Protection effect of endurance training against reoxygenation-induced injury in rat heart. J. Appl. Physiol. 68: 1672–8, 1990.

    PubMed  CAS  Google Scholar 

  84. Marin, E., Kretzschmar, M., Arokoski, J., Hanninen, O., and Klinger, W.: Enzymes of glutathione synthesis in dog skeletal muscle and their response to training. Acta Physiol. Scand., 147: 369–73, 1993.

    PubMed  CAS  Google Scholar 

  85. Ishikawa, T., and Sies, H.: Cardiac transport of glutathione disulfide and S-conjugates. J. Biol. Chem., 259: 3838–43, 1984.

    PubMed  CAS  Google Scholar 

  86. Morales, C.F., Anzueto, A., Andrade, F., Levine, S.M., Maxwell, L.C., Lawrence, R.A., Jenkinson, S.G.: Diethylmaleate produces diaphragmatic impairment after resistive breathing. J. Appl. Physiol., 75: 2406–11, 1993.

    PubMed  CAS  Google Scholar 

  87. Novelli, G.P., Falsini, S., and Braccioti, G.: Exogenous glutathione increases endurance to muscle effort in mice. Pharmacol. Res., 23: 149–55, 1991.

    Article  PubMed  CAS  Google Scholar 

  88. Leeuwenburgh, C., Fiebig, R., Leichtweis, S., Hollander, J., and Ji, L.L.: Effect of glutathione and glutathione ester supplementation during prolonged exercise. Med. Sci. Sports Exerc., 27: S39, 1995.

    Google Scholar 

  89. Griffiths, O.W., and Meister, A.: Glutathione: interorgan transpocation, turnover, and metabolism. Proc. Natl. Acad. Sci. USA, 76: 5606–10, 1979.

    Google Scholar 

  90. Sen, C.K., Atalay, M., and Hanninen, O.: Exercise-induced oxidative stress: glutathione supplementation and deficiency. J. Appl. Physiol., 77: 2177–87, 1994.

    PubMed  CAS  Google Scholar 

  91. Bray, T.M., and Taylor, C.G.: Enhancement of tissue glutathione for antioxidant and immune functions in malnutrition. Biochem. Pharmacol., 47: 2113–23, 1994.

    Article  PubMed  CAS  Google Scholar 

  92. Martensson, J., and Meister, A.: Mitochondrial damage in muscle occurs after marked depletion of glutathione and is prevented by giving glutathione monoester. Proc. Natl. Acad. Sci. USA, 86: 471–5, 1989.

    PubMed  CAS  Google Scholar 

  93. Sen, C.K., Rankinen, T., Vaisanen, S., and Rauramaa, R.: Oxidative stress following human exercise: effect of N-acetylcysteine supplementation. J. Appl. Physiol., 76: 2570–7, 1994.

    PubMed  CAS  Google Scholar 

  94. Beyer, R.E.: The relative essentiality of the antioxidant function of coenzyme Q — the interactive role of DT-diaphorase. Mol. Asp. Med., 15: S117–29, 1994.

    Article  CAS  Google Scholar 

  95. Leibovitz, B., Hu, M.L., Tappel, A.L., Dietary supplements of vitamin E, beta-carotene, coenzyme Q10 and selenium protect tissues against lipid peroxidation in rat tissue slices. J. Nutr., 120: 97–104, 1990.

    PubMed  CAS  Google Scholar 

  96. Shimomura, Y., Suzuki, M., Sugiyama, S., Hanaki, Y., and Ozawa, T.: Protective effect of coenzyme Q10 on exercise-induced muscular injury. Biochem. Biophys. Res. Commun., 176: 349–355, 1991.

    Article  PubMed  CAS  Google Scholar 

  97. Sevanian, A., Davies, K.J.A., and Hochstein, P.: Conservation of vitamin C by uric acid in the blood. J. Free Radic. Biol. Med., 1: 117–24, 1985.

    Article  PubMed  CAS  Google Scholar 

  98. Hellsten-Westing, Y., Ekblom, B., and Sjodin, B.: The metabolic relation between hypoxanthine and uric acid in man following maximal short-distance running. Acta Physiol. Scand. 137: 341–5, 1989.

    Google Scholar 

  99. Quintanilha, A.T., and Packer, L.: Vitamin E, physical exercise and tissue oxidative damage, Ciba Foundation Symp. 101: 56–69, 1983.

    CAS  Google Scholar 

  100. Ji, L.L., Dillon, D., and Wu, E.: Alteration of antioxidant enzymes with aging in rat skeletal muscle and liver. Am. J. Physiol., 258: R918–23, 1990.

    PubMed  CAS  Google Scholar 

  101. Lang, J.K., Gohil, K., Packer, L., and Burk, R.F.: Selenium deficiency, endurance exercise capacity, and antioxidant status in rats. J. Appl. Physiol., 63: 2532–5, 1987.

    PubMed  CAS  Google Scholar 

  102. Buczynski, A., Kedziora, J., Tkaczewski, W., and Wachowicz B.: Effect of submaximal physical exercise on antioxidant protection of human blood platelets. Int. J. Sports Med., 12: 52–4, 1991.

    PubMed  CAS  Google Scholar 

  103. Mena, P., Maynar, M., Gutierrez, J.M., Maynar, J., Timon, J., and Campillo, J.E.: Erythrocyte free radical scavenger enzymes in bicycle professional racers: adaptation to training. Int. J Sports Med., 12: 563–6, 1991.

    Article  PubMed  CAS  Google Scholar 

  104. Lawler, J.M., Powers, S.K., Visser, T., Van Dijk, H., Korthuis, M.J., and Ji, L.L. Acute exercise and skeletal muscle antioxidant and metabolic enzymes: effect of fiber type and age. Am. J. Physiol., 265: R1344–50, 1993.

    Google Scholar 

  105. Ohno, H., Suzuki, K., Fujii, J., Yamashita, H., Kizaki, T., Oh-ishi, S., and Taniguchi, N.: Superoxide dismutases in exercise and disease, in Exercise and Oxygen Toxicity, edited by Sen, C.K., Packer, L., Hanninen, O. New York, Elsevier Science, 1994, pp. 127–61.

    Google Scholar 

  106. Ji, L.L.: Antioxidant enzyme response to exercise and aging. Med. Sci. Sports Exerc., 25: 225–31, 1993.

    PubMed  CAS  Google Scholar 

  107. Fridovich, I.: Superoxide radical and superoxide dismutases. Annu. Rev. Biochem., 64: 97–112, 1995.

    Article  PubMed  CAS  Google Scholar 

  108. Cao, G.H., and Chen, J.D.: Effects of dietary zinc on free radical generation, lipid peroxidation, and superoxide dismutase in trained mice. Arch. Biochem. Biophys., 291: 147–53, 1991.

    Article  PubMed  CAS  Google Scholar 

  109. Quintanilha, A.T. The effect of physical exercise and/or Vitamin E on tissue oxidative metabolism. Biochem Soc. Trans., 12: 403–4, 1984.

    PubMed  CAS  Google Scholar 

  110. Powers, S.K., Criswell, D., Lawler, J., Ji, L.L., Martin, D., Herb, R., and Dudley, G.: Influence of exercise intensity and duration on antioxidant enzyme activity in skeletal muscle differing in fiber type. Am. J. Physiol., 266: R375–80, 1994.

    PubMed  CAS  Google Scholar 

  111. Powers, S.K., Criswell, D., Lawler, J., Martin, D., Lieu, F.K., Ji, L.L., and Herb, R.A.: Rigorous exercise training increases superoxide dismutase activity in the ventricular myocardium. Am. J. Physiol., 265: H2094–8, 1993.

    Google Scholar 

  112. Powers, S.K., Criswell, D., Lawler, J., Martin, D., Ji, L.L., and Dudley, G.: Training-induced oxidative and antioxidant enzyme activity in the diaphragm: influence of exercise intensity and duration. Resp. Physiol., 95: 226–37, 1994.

    Google Scholar 

  113. Gore, M., Fiebig, R., Hollander, J., Leichtweis, S., Leeuwenburgh, C., and Ji, L.L.: Exercise training alters antioxidant enzyme activity and mRNA abundance in skeletal muscle. Med. Sci. Sports Exerc., 28: S101, 1996.

    Google Scholar 

  114. Brady, P.S., Brady, L.J., and Ullrey, D.E.: Selenium, vitamin E and the response to swimming stress in rats. J. Nutr., 109: 1103–9, 1979.

    PubMed  CAS  Google Scholar 

  115. Vihko, V., Salminen, A., and Rantamaki, J.: Oxidative lysosomal capacity in skeletal muscle of mice after endurance training. Acta Physiol. Scand., 104: 74–9, 1978.

    Article  PubMed  CAS  Google Scholar 

  116. Gunzler, W.A., and Flohe, L.: Glutathione peroxidase, in Handbook of Methods for Oxygen Free Radical Research, edited by Greenwald, R.A. Boca Raton, CRC Press, 1985, p. 285–90.

    Google Scholar 

  117. Blum, J., and Fridovich, I.: Inactivation of glutathione peroxidase by superoxide radical. Arch. Biochem. Biophys., 240: 500–8, 1985.

    Article  PubMed  CAS  Google Scholar 

  118. Laughlin M.H., Simpson, T., Sexton, W.L., Brown, OR., Smith, J.K., and Korthuis, RJ.: Skeletal muscle oxidative capacity, antioxidant enzymes, and exercise training. J. Appl. Physiol., 68:2337–43, 1990.

    PubMed  CAS  Google Scholar 

  119. Calderera, C.M., Guarnierri, C., and Lazzari, F.: Catalase and peroxidase activity in cardiac muscle. Bull. Italian Exp. Biol. Soc., 49: 72–7, 1973.

    Google Scholar 

  120. Alessio, H.M., and Goldfarb, A.H.: Lipid peroxidation and scavenger enzymes during exercise: adaptive response to training. J. Appl. Physiol., 64: 1333–6, 1988.

    PubMed  CAS  Google Scholar 

  121. Luhtala, T., Roecher, E.B., Pugh, T., Feuers, R.J., and Weindruch, R.: Dietary restriction opposes age-related increases in rat skeletal muscle antioxidant enzyme activities. J. Gerontol. 1995.

  122. Sies, H. Oxidative stress: introductory remarks, in Oxidative Stress, edited by Sies, H. New York, Academic Press, 1985. pp. 1–8.

    Google Scholar 

  123. Evelo, C.T.A., Palmen, N.G., Artur, Y., and Janssen, G.M.E.: Changes in blood glutathione concentrations, and in erythrocyte glutathione reductase and glutathione S-transferase activity after running training and after participation in contests. Eur. J. Appl. Physiol., 64: 354–8, 1992.

    Article  CAS  Google Scholar 

  124. Ohno, H., Sato, Y., Yamashita, K., Rikuo, D., Katsura, A., Kondo, T., and Taniguchi, N.: The effect of brief physical exercise on free radical scavenging enzyme systems in human red blood cells. Can. J. Physiol. Pharmacol., 64: 1263–5, 1986.

    PubMed  CAS  Google Scholar 

  125. Habig, W.H., Pabst, M.J., and Jakoby, W.B.: Glutathione S-transferases. J. Biol. Chem., 249: 7130–9, 1984.

    Google Scholar 

  126. Vani, M., Reddy, G.P., Reddy, G.R., Thyagaraju, K., and Reddana, P.: Glutathione-S-transferase, superoxide dismutase, xanthine oxidase, cata-lase, glutathione peroxidase and lipid peroxidation in the liver of exercised rats. Biochem. Int., 21: 17–26, 1990.

    PubMed  CAS  Google Scholar 

  127. Reddy, K.V., Anuradha, D., Kumar, T.C., and Reddanna, P.: Induction of Ya1 subunit of rat hepatic glutathione S-transferases by exercise-induced oxidative stress. Arch. Biochem Biophys., 1995.

  128. Storz, G., Tartaglia, L.A., and Ames, B.N.: Transcriptional regulator of oxidative stress-inducible genes: direct activation by oxidation. Science, 248: 189–94, 1990.

    PubMed  CAS  Google Scholar 

  129. Demple, B., and Amabile-Cuevas, C.F.: Redox redux: the control of oxidative stress responses. Cell, 67: 837–9, 1991.

    Article  PubMed  CAS  Google Scholar 

  130. Sen, C.K., and Packer, L.: Antioxidant and redox regulation of gene transcription. FASEB J., 10: 709–20, 1996.

    PubMed  CAS  Google Scholar 

  131. Witt, E.H., Reznick, A.Z., Vigguie, C.A., Starke-Reed, P., and Packer, L.: Exercise, oxidative damage and the effects of antioxidant manipulation. J. Nutr., 122: 766–73, 1992.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Ji, L.L., Leichtweis, S. Exercise and oxidative stress: Sources of free radicals and their impact on antioxidant systems. AGE 20, 91–106 (1997). https://doi.org/10.1007/s11357-997-0009-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-997-0009-x

Key words

Navigation