Skip to main content

Advertisement

Log in

Acyclic nucleoside phosphonate antivirals activate gene expression of monocyte chemotactic protein 1 and 3

  • Published:
Journal of Biomedical Science

Summary

Acyclic nucleoside phosphonates are potent antiviral agents effective against replication of DNA viruses and retroviruses including human immunodeficiency virus (HIV). In addition to their antimetabolic mode of antiviral action, acyclic nucleoside phosphonates also possess immunomodulatory properties. We have shown recently that a number of them stimulate secretion of cytokines including chemokines RANTES/CCL5 (“regulated upon activation, normal T cell expressed and secreted”) and MIP-1 alpha/CCL3 (macrophage inflammatory protein-1 alpha) that may inhibit entry of HIV in cells. In present experiments we analyzed effects of acyclic nucleoside phosphonates on gene expression of other members of the beta family of chemokines, monocyte chemotactic proteins (MCPs), which have also been implicated in the control of HIV infection. The following compounds differing at the type of heterocyclic base, i.e. adenine (A), or 2,6-diaminopurine (DAP), at the 6-amino group of the base, and at the N 9-side chain represented by 9-[2-(phosphonomethoxy)ethyl] (PME) and 9-[2-(phosphonomethoxy)propyl] (PMP) moieties were included in the study: (1) (R)-PMPA, ie. tenofovir, (2) N 6-cyclopropyl-(R)-PMPDAP, (3) N 6-cyclopentyl-(R)-PMPDAP, (4) N 6-dimethylaminoethyl-(R)-PMPDAP, (5) N 6-cyclopentyl-PMEDAP, (6) N 6-isobutyl-PMEDAP, (7) N 6 -cyclohexylmetyl-PMEDAP, and (8) N 6 -cyclooctyl-PMEDAP. These compounds are able to activate production of MCP-1 and MCP-3, and none of them influences gene expression of MCP-2, and MCP-5. Enhancement of monocyte chemotactic protein expression was found to be mediated by transcriptional factor nuclear factor-κB (NF-κB).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. De Clercq E. 2004. HIV-chemotherapy and prophylaxis: new drugs, leads and approaches. Int. J. Biochem. Cell Biol. 36: 1800–1822

    Article  PubMed  CAS  Google Scholar 

  2. Kramata P., Votruba I., Otová B., Holý A. 1996. Different inhibitory potencies of acyclic phosphonomethoxyalkyl nucleotide analogs toward DNA polymerases a, d and e. Mol. Pharmacol. 49: 1005–1011

    PubMed  CAS  Google Scholar 

  3. Crowe S. 1999. New reverse transcriptase inhibitors. Adv. Exp. Med. Biol. 458: 183–197

    PubMed  CAS  Google Scholar 

  4. Holý A., Votruba I., Merta A., Černý J., Veselý J., Vlach J., Sediva K. 1990 Acyclic nucleotide analogues: synthesis, antiviral activity and inhibitory effects on some cellular and virus-encoded enzymes in vitro. Antiviral Res. 13: 295–311

    Article  PubMed  Google Scholar 

  5. Zídek Z., Potměšil P., Kmoníčková E., Holý A. 2003. Immunobiological activity of N-[2 phosphonomethoxy)alkyl] derivatives of N 6 -substituted adenines, and 2,6-diaminopurines. Eur. J. Pharmacol. 475: 149–159

    Article  PubMed  CAS  Google Scholar 

  6. Zídek Z., Franková D., Holý A. 2001. Activation by 9-(R)-[2-(phosphonomethoxy)propyl]adenine of chemokine (RANTES, macrophage inflammatory protein-1 alpha) and cytokine (tumor necrosis factor alpha, interleukin-10 [IL-10], IL-1 b) production. Antimicrob. Agents Chemother. 45: 3381–3386

    Article  PubMed  Google Scholar 

  7. Loetscher P., Seitz M., Clark-Lewis I., Baggiolini M., Moser B. 1994. Monocyte chemoattractant proteins MCP-1, MCP-2 and MCP-3 are major attractants for human CD4+ and CD8+ T lymphocytes. FASEB 8: 1055–1060

    CAS  Google Scholar 

  8. Van Coillie E., Van Damme J., Opdenakker G. 1999. The MCP/eotaxin subfamily of CC chemokines. Cytokine Growth Factor Rev. 10: 61–86

    Article  PubMed  Google Scholar 

  9. Bacon K., Baggiolini M., Broxmeyer H., Horuk R., Lindley I., Mantovani A., Maysushima K., Murphy P., Nomiyama H., Oppenheim J. 2002. Chemokine/chemokine receptor nomenclature. J. Interferon Cytokine Res. 22: 1067–8

    Article  PubMed  Google Scholar 

  10. Holý A., Votruba I., Tloušťová E., Masojídková M. 2001. Synthesis and cytostatic activity of N-[2-(phosphonomethoxy)alkyl] derivatives of N6-substituted adenines, 2,6-diaminopurines and related compounds. Collect. Czechoslovak. Chem. Commun. 66: 1545–1592

    Article  Google Scholar 

  11. Chen Z., Yu S., Bakhiet M., Winblad B., Zhu J. 2003. The chemokine receptor CCR5 is not necessary inflammatory mediator in kainic acid induced hippocampal injury: evidence for a compensatory effect by increased CCR2 and CCR3. J. Neurochem. 86: 61–68

    Article  PubMed  CAS  Google Scholar 

  12. Hu J., Li G., Wang W., Zhu J., Li Y., Zhou G., Sun Q. 2002. Transfection of colorectal cancer cells with chemokine MCP-3 (monocyte chemotactic protein-3) gene retards tumor growth and inhibits tumor metastasis. World J. Gastroenterol. 8: 1067–1072

    PubMed  CAS  Google Scholar 

  13. Park M., Hoffmann K., Cheever A., Amichay D., Wynn T., Farber J. 2001. Patterns of chemokine expression in models of Schistosoma mansoni inflammation and infection reveal relationships between type 1 and type 2 responses and chemokines in vivo. Infect. Immun. 69: 6755–6768

    Article  PubMed  CAS  Google Scholar 

  14. Schreck R., Meier B., Mannel D., Droge W., Baeuerle P. 1992. Dithiocarbamates as potent inhibitors of nuclear factor kappa B activation in intact cells. J. Exp. Med. 175: 1181–1194

    Article  PubMed  CAS  Google Scholar 

  15. Frade J., Llorente M., Mellado M., Alcami J., Gutierrez-Ramos J., Zaballos A., Real G., Martinez C. 1997. The amino-terminal domain of the CCR2 chemokine receptor acts as coreceptor for HIV-1 infection. J. Clin. Invest. 100: 497–502

    Article  PubMed  CAS  Google Scholar 

  16. Blanpain C., Migeotte I., Lee B., Vakili J., Doranz B., Govaerts C., Vassart G., Doms R., Parmentier M. 1999. CCR5 binds multiple CC-chemokines: MCP-3 acts as natural antagonist. Blood 94: 1899–1905

    PubMed  CAS  Google Scholar 

  17. Vicenzi E., Alfano M., Ghezzi S., Gatti A., Veglia F., Lazzarin A., Sozzani S., Mantovani A., Poli G. 2000. Divergent regulation of HIV-1 replication in PBMC of infected individuals by CC chemokines: suppression by RANTES, MIP-1a and MCP-3, and enhancement by MCP-1. J. Leukoc. Biol. 68: 405–412

    PubMed  CAS  Google Scholar 

  18. Gonzalez E., Rovin B., Sen L., Cooke G., Dhanda R., Mummidi S., Kulkarni H. 2002. HIV-1 infection and AIDS dementia are influenced by a mutant MCP-1 allele linked to increased monocyte infiltration of tissues and MCP-1 levels. Proc. Natl. Acad. Sci. USA 99: 13795–13800

    Article  PubMed  CAS  Google Scholar 

  19. Eugenin E., D`Aversa T., Lopez L., Calderon T., Berman J. 2003. MCP-1 (CCL2) protects human neurons and astrocytes from NMDA or HIV-tat-induced apoptosis. J. Neurochem. 85: 1299–1311

    Article  PubMed  CAS  Google Scholar 

  20. Hokeness K., Kuziel W., Biron C., Salazar-Mather T. 2005. Monocyte chemoattractant protein-1 and CCR2 interactions are required for IFN-alpha/beta-induced inflammatory response and antiviral defense in liver. J. Immunol. 174: 1549–1556

    PubMed  CAS  Google Scholar 

  21. Hirose K., Hakozaki M., Nyunoya Y., Kobayashi Y., Matsushita K., Takenouchi T., Mikata A. 1995. Chemokine gene transfection into tumour cells reduced tumorigenicity in nude mice in association with neutrophilic infiltration. Br. J. Cancer 72: 708–714

    PubMed  CAS  Google Scholar 

  22. Rollins B., Sunday M. 1991. Suppression of tumor formation in vivo by expression of the JE gene in malignant cells. Mol. Cell Biol. 11: 3125–3131

    PubMed  CAS  Google Scholar 

  23. Mantovani A., Bottazzi B., Sozzani S., Peri G., Allavena P., Dong Q., Vecchi A., Colota F. 1993. Cytokine regulation of tumour-associated macrophages. Res. Immunol. 144: 280–283

    Article  PubMed  CAS  Google Scholar 

  24. Sarafi M., Garcia-Zepeda E., MacLean J., Charo I., Luster A. 1997. Murine monocyte chemoattractant protein (MCP)-5: a novel CC chemokine that is structural and functional homologue of human MCP-1. J. Exp. Med. 185: 99–109

    Article  PubMed  CAS  Google Scholar 

  25. Gong W., Howard O., Turpin J., Grimm M., Ueda H., Gray P., Raport C., Oppenheim J., Wang J. 1998. Monocyte chemotactic protein-2 activates CCR5 and blocks CD4/CCR5-mediated HIV-1 entry replication. J. Biol. Chem. 273: 4289–4292

    Article  PubMed  CAS  Google Scholar 

  26. Berger E., Murphy P., Farber J. 1999. Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism and disease. Annu. Rev. Immunol. 17: 657–700

    Article  PubMed  CAS  Google Scholar 

  27. Schols D., Proost P., Damme J., De Clercq E. 1997. RANTES and MCP-3 inhibit the replication of T-cell-tropic human immunodeficiency virus type 1 strains (SF-2, MN, and HE). J. Virol. 74: 7300–7304

    Google Scholar 

  28. Modi W., Goedert J., Strathdee S., Buchbinder S., Detels R., Donfield S., O`Brien S., Winkler C. 2003. MCP-1-MCP-3-Eotaxin gene cluster influences HIV-1 transmission. AIDS 17: 2357–2365

    Article  PubMed  CAS  Google Scholar 

  29. Chada S., Ramesh R., Mhashilkar A. 2003. Cytokine- and chemokine-based gene therapy for cancer. Curr. Opin. Mol. Ther. 5: 463–474

    PubMed  CAS  Google Scholar 

  30. Wetzel K., Menten P., Opdenakker G., Van Damme J., Grone H., Giese N., Vecchi A., Sozzani S., Cornelis J., Rommelaere J., Dinsart C. 2001. Transduction of human MCP-3 by a parvoviral vector induces leukocyte infiltration and reduces growth of human cervical carcinoma cell xenografts. J. Gene Med. 3: 326–337

    Article  PubMed  CAS  Google Scholar 

  31. Fioretti F., Fradelizi D., Stoppacciaro A., Ramponi S., Ruco L., Minty A., Sozzani S., Garlanda C., Vecchi A., Mantovani A. 1998. Reduced tumorigenicity and augmented leukocyte infiltration after monocyte chemotactic protein-3 (MCP-3) gene transfer: perivascular accumulation of dendritic cells in peritumoral tissue and neutrophil recruitment within the tumor. J. Immunol. 161: 342–346

    PubMed  CAS  Google Scholar 

  32. Pahl H.L. 1999. Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene 18: 6853–6866

    Article  PubMed  CAS  Google Scholar 

  33. Li X., Massa P.E., Hanidu A., Peet G.W., Aro P., Savitt A., Mische S., Li J., Marcu K.B. 2002. IKKalpha , IKKbeta and NEMO/IKKgamma are each required for the NF-kappa B mediated inflammatory response program. J. Biol. Chem. 277: 45129–45140

    Article  PubMed  CAS  Google Scholar 

  34. Potmesil P., Krecmerova M., Kmonickova E., Holy A., Zidek Z. 2006. Nucleotide analogues with immunobiological properties: 9-[2-Hydroxy-3-(phosphonomethoxy)propyl]-adenine (HPMPA), -2,6-diaminopurine (HPMPDAP), and their N(6)-substituted derivatives. Eur. J. Pharmacol. 540: 191–199

    Article  PubMed  CAS  Google Scholar 

  35. Wuyts W., Vanaudenaerde B., Dupont L., Demedts M., Verleden G. 2003. Involvement of p38 MAPK, p42/p44 and NF kappa B in IL-1beta induced chemokine release in human airway smooth muscle cells. Respir. Med. 97: 811–817

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The work was supported by grant no. 1M 6138896301 from the Centre for New Antivirals and Antineoplastics. It was performed as a part of research projects of the Institute of Experimental Medicine no. AV0 Z50390512 and the Institute of Organic Chemistry and Biochemistry no. Z40550506.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Potměšil.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Potměšil, P., Holý, A., Kmoníčková, E. et al. Acyclic nucleoside phosphonate antivirals activate gene expression of monocyte chemotactic protein 1 and 3. J Biomed Sci 14, 59–66 (2007). https://doi.org/10.1007/s11373-006-9116-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11373-006-9116-4

Key words

Navigation