Skip to main content
Log in

MAA-modified and luminescence properties of ZnO quantum dots

  • Published:
Science in China Series B: Chemistry Aims and scope Submit manuscript

Abstract

The precursor of ZnO has been prepared by refluxing in ethanol at 70°C for 4 h using ZnAc2·H2O as the initial agent. Then ZnO has been prepared from the reaction of LiOH·H2O and the precursor. The ZnO is modified by mercaptoacetic acid (MAA) and detected by SEM and XRD. These ZnO particles have single phase, like-sphere and size of 4.6 nm. The modified effectivity of MAA for the quantum dots (QDs) has been investigated with UV-visible and fluorescence analysis, and the mechanism and property of ZnO light emitting have been discussed under given conditions. The reasons why the fluorescent emission peak of surface defects disappear and the exciton emission peak increase are that MAA effectively covers the surface defects of ZnO and stably coats ZnO particles. At the same time, the effect of the added amount of the MAA, temperature and electrolyte on light-emitting properties of modified product has also been studied. The result shows that the modified ZnO QDs have good fluorescence property, stability and suitable capability of resisting electrolyte. These results are important for biological analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Govorov A O. Optical and electronic properties of quantum dots with magnetic impurities. Comptes Rendus Physique, 2008, 9(8): 857–873

    Article  CAS  Google Scholar 

  2. Smith A M, Duan H W, Mohs A M, Nie S M. Bioconjugated quantum dots for in vivo molecular and cellular imaging. Adv Drug Deli Rev, 2008, 60(11): 1226–1240

    Article  CAS  Google Scholar 

  3. Santos B S, Farias P M A, Fontes A, Brasil Jr A G, Jovino C N, Neto A G C, Silva D C N, de Menezes F D, Ferreira R. Semiconductor nanocrystals obtained by colloidal chemistry for biological applications. Appl Surf Sci, 2008, 255(3): 796–798

    Article  CAS  Google Scholar 

  4. Li H B, Wang X Q. Single QD-micelles coated with gemini surfactant for selective recognition of a cation and an anion in aqueous solutions. Sens Actu B: Chem, 2008, 134(1): 238–244

    Article  Google Scholar 

  5. Kim D G, Tomihira K K, Okahara S, Nakayama M k. Highly efficient preparation of size-controlled CdS quantum dots with high photolu minescence yield. J Crys Grow, 2008, 310(18): 4244–4247

    Article  CAS  Google Scholar 

  6. Zheng J J, Zheng Z H, Gong W W, Hu X B, Gao W, Ren X G, Zhao H F. Stable, small, and water-soluble Cu-doped ZnS quantum dots prepared via femtosecond laser ablation. Chem Phys Lett, 2008, 465(4–6): 275–278

    Article  CAS  Google Scholar 

  7. Narayanan S, Sinha S S, Verma P K, Pal S K. Ultrafast energy transfer from 3-mercaptopropionic acid-capped CdSe/ZnS QDs to dye-labelled DNA Chem. Phy Lett, 2008, 463(1–3): 160–165

    CAS  Google Scholar 

  8. Liu M M, Xu L, Cheng W Q, Zeng Y, Yan Z Y. Surface-modified CdS quantum dots as luminescent probes for sulfadiazine determination. Spectrochim Acta Part A: Mole Biomole Spectrosc, 2008,70(5): 1198–1202

    Article  Google Scholar 

  9. Hong D D, Rhee J I. Use of CdSe/ZnS luminescent quantum dots incorporated within sol-gel matrix for urea detection. Anal Chim Acta, 2008, 626(1): 53–61

    Article  Google Scholar 

  10. Magnanini R, Tarricone L, Parisini A, Longo M, Gombia E. Investigation of GaAs/InGaP superlattices for quantum well solar cells. Thin Solid Films, 2008, 516(20): 6734–6738

    Article  CAS  Google Scholar 

  11. Hazdra P, Voves J, Oswald J, Kuldová K, Hospodková A, Hulicius E. Optical characterisation of MOVPE grown vertically correlated InAs/GaAs QDs. Microelectro J, 2008, 39(8): 1070–1074

    Article  CAS  Google Scholar 

  12. Kaizu T K, Takahasi M T, Yamaguchi K, Mizuki J. In situ determination of Sb distribution in Sb/GaAs(001) layer for high-density InAs quantum dot growth. J Crys Grow, 2008, 310(15): 3436–3439

    Article  CAS  Google Scholar 

  13. Idowu M, Lamprecht E, Nyokong T. Interaction of water-soluble thiol capped CdTe quantum dots and bovine serum albumin. J Photochem Photobiol: Chem, 2008,198(1): 7–12

    Article  CAS  Google Scholar 

  14. Anderson R E, Warren C W. Systematic investigation of preparing biocompatible, single and small ZnS-capped CdSe quantum dots with amphiphilic polymers. ACS Nano, 2008, 2(7): 1341–1352

    Article  CAS  Google Scholar 

  15. Li L, Guo L, Zhang Z, Tang J, Xie J. Recent advances of aptamer sensors. Sci China Ser B-Chem, 2008, 51(3): 193–204

    Article  CAS  Google Scholar 

  16. Reithmaier J P, Forchel A. Recent advances in semiconductor quantum-dot lasers. Comptes Rendus Physique, 2003, 4(6): 611–619

    Article  CAS  Google Scholar 

  17. Xu H, Yan C. Preparation and application of water-soluble quantum dots (in Chinese). Prog Chem, 2005,17(5): 800–808

    CAS  Google Scholar 

  18. Sato M k, Kawata A T, Morito S Z, Sato Y, Yamaguchi I. Preparation and properties of polymer/zinc oxide nanocomposites using functionalized zinc oxide QDs. Euro Polym J, 2008, 44(11): 3430–3438

    Article  CAS  Google Scholar 

  19. Patra M K, Manoth M, Singh V K, Gowd G S, Choudhry V S, Vadera S R, Kumar N. Synthesis of stable dispersion of ZnO quantum dots in aqueous medium showing visible emission from bluish green to yellow. J Luminescence, 2009, 129(3), 320–324

    Article  CAS  Google Scholar 

  20. Norberg N S, Gamelin D R. Influence of surface modification on the luminescence of colloidal ZnO nanocrystals. J Phys Chem B, 2005, 109(44): 20810–20816

    Article  CAS  Google Scholar 

  21. Yang Y, Li Y Q, Fu S Y, Xiao H M. Transparent and light-emitting epoxy nanocomposites containing ZnO quantum dots as encapsulating materials for solid state lighting. J Phys Chem C, 2008, 112(28): 10553–10558

    Article  CAS  Google Scholar 

  22. Monticone S, Tufeu R, Kanaev A V. Complex nature of the UV and visible fluorescence of colloidal ZnO nanoparticles. J Phys Chem B, 1998, 102: 2854–2862

    Article  CAS  Google Scholar 

  23. Guo L. Highly monodisperse polymer-capped ZnO nanoparticles: Preparation and optical properties. Appl Phys Lett, 2000,76(20): 2901–2903

    Article  CAS  Google Scholar 

  24. Shan G Y, Lu Q, An L M, Wang X. Electrons transfer between mercaptoacetic acid and ZnO nanocrystal thin film. Chem Res Chin U, 2005, 21(2): 201–204

    CAS  Google Scholar 

  25. Meulenkamp E A. Size dependence of the dissolution of ZnO nanoparticles. J Phys Chem B, 1998, 102: 7764–7769

    Article  CAS  Google Scholar 

  26. Yan Y, Zhang W, Fan J, Ji X. New approach to prepare Q-CdS nanoparticles: Polymer dispersion method (in Chinese). Acta Chim Sin, 2005, 63(14): 1303–1306

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia Zhuang.

Additional information

Supported by the National Natural Science Foundation of China (Grant No. 202171042) and the Natural Science Foundation of Southwest Petroleum University (Grant No. 2007XJZ044)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhuang, J., Liu, M. & Liu, H. MAA-modified and luminescence properties of ZnO quantum dots. Sci. China Ser. B-Chem. 52, 2125–2133 (2009). https://doi.org/10.1007/s11426-009-0198-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-009-0198-5

Keywords

Navigation