Skip to main content
Log in

The structure and function of catalytic RNAs

  • Special Topic
  • Published:
Science in China Series C: Life Sciences Aims and scope Submit manuscript

Abstract

Before the discovery of ribozymes, RNA had been proposed to function as a catalyst, based on the discovery that RNA folded into high-ordered structures as protein did. This hypothesis was confirmed in the 1980s, after the discovery of Tetrahymena group I intron and RNase P ribozyme. There have been about ten ribozymes identified during the past thirty years, as well as the fact that ribosomes function as ribozymes. Advances have been made in understanding the structures and functions of ribozymes, with numerous crystal structures resolved in the past years. Here we review the structure-function relationship of both small and large ribozymes, especially the structural basis of their catalysis. ribozyme, structure, catalysis

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kruger K, Grabowski P J, Zaug A J, et al. Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. Cell, 1982, 31(1): 147–157 6297745, 10.1016/0092-8674(82)90414-7, 1:CAS:528:DyaL3sXht1eguw%3D%3D

    Article  PubMed  CAS  Google Scholar 

  2. Guerrier-Takada C, Gardiner K, Marsh T, et al. The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell, 1983, 35(3 Pt 2): 849–857 6197186, 10.1016/0092-8674(83)90117-4, 1:CAS:528:DyaL2cXpvFShsA%3D%3D

    Article  PubMed  CAS  Google Scholar 

  3. Butcher S E. Structure and function of the small ribozymes. Curr Opin Struct Biol, 2001, 11(3): 315–320 11406380, 10.1016/S0959-440X(00)00207-4, 1:CAS:528:DC%2BD3MXks1Gqs7Y%3D

    Article  PubMed  CAS  Google Scholar 

  4. Zhou Y, Lu C, Wu Q J, et al. GISSD: Group I intron sequence and structure database. Nucleic Acids Res, 2008, 36(Database issue): D31–37 17942415, 10.1093/nar/gkm766, 1:CAS:528:DC%2BD1cXhtVWitb8%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  5. Fedorova O, Zingler N. Group II introns: structure, folding and splicing mechanism. Biol Chem, 2007, 388(7): 665–678 17570818, 10.1515/BC.2007.090, 1:CAS:528:DC%2BD2sXnvVWktLo%3D

    Article  PubMed  CAS  Google Scholar 

  6. Haugen P, Simon D M, Bhattacharya D. The natural history of group I introns. Trends Genet, 2005, 21(2): 111–119 15661357, 10.1016/j.tig.2004.12.007, 1:CAS:528:DC%2BD2MXmslKgtA%3D%3D

    Article  PubMed  CAS  Google Scholar 

  7. Kazantsev A V, Pace N R. Bacterial RNase P: a new view of an ancient enzyme. Nat Rev Microbiol, 2006, 4(10): 729–740 16980936, 10.1038/nrmicro1491, 1:CAS:528:DC%2BD28XpsFOktLk%3D

    Article  PubMed  CAS  Google Scholar 

  8. Cech T R. Structural biology. The ribosome is a ribozyme. Science, 2000, 289(5481): 878–879 10960319, 10.1126/science.289.5481.878, 1:CAS:528:DC%2BD3cXlvFSntLg%3D

    Article  PubMed  CAS  Google Scholar 

  9. Pley H W, Flaherty K M, McKay D B. Three-dimensional structure of a hammerhead ribozyme. Nature, 1994, 372(6501): 68–74 7969422, 10.1038/372068a0, 1:CAS:528:DyaK2MXitVGhtb0%3D

    Article  PubMed  CAS  Google Scholar 

  10. Lilley D M. The origins of RNA catalysis in ribozymes. Trends Biochem Sci, 2003, 28(9): 495–501 13678961, 10.1016/S0968-0004(03)00191-9, 1:CAS:528:DC%2BD3sXnt1ylsLk%3D

    Article  PubMed  CAS  Google Scholar 

  11. Lilley D M. Structure, folding and mechanisms of ribozymes. Curr Opin Struct Biol, 2005, 15(3): 313–323 15919196, 10.1016/j.sbi.2005.05.002, 1:CAS:528:DC%2BD2MXlt1SrsLg%3D

    Article  PubMed  CAS  Google Scholar 

  12. Nakano S, Chadalavada D M, Bevilacqua P C. General acid-base catalysis in the mechanism of a hepatitis delta virus ribozyme. Science, 2000, 287(5457): 1493–1497 10688799, 10.1126/science.287.5457.1493, 1:CAS:528:DC%2BD3cXhsV2qtLw%3D

    Article  PubMed  CAS  Google Scholar 

  13. McKay D B. Structure and function of the hammerhead ribozyme: an unfinished story. RNA, 1996, 2(5): 395–403 8665407, 1:CAS:528:DyaK28XjsFKitbo%3D

    PubMed Central  PubMed  CAS  Google Scholar 

  14. Martick M, Scott W G. Tertiary contacts distant from the active site prime a ribozyme for catalysis. Cell, 2006, 126(2): 309–320 16859740, 10.1016/j.cell.2006.06.036, 1:CAS:528:DC%2BD28Xot1OntL4%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  15. Nelson J A, Uhlenbeck O C. When to believe what you see. Mol Cell, 2006, 23(4): 447–450 16916633, 10.1016/j.molcel.2006.08.001, 1:CAS:528:DC%2BD28Xpt1Sntb8%3D

    Article  PubMed  CAS  Google Scholar 

  16. Walter N G, Burke J M. The hairpin ribozyme: structure, assembly and catalysis. Curr Opin Chem Biol, 1998, 2(1): 24–30 9667918, 10.1016/S1367-5931(98)80032-X, 1:CAS:528:DyaK1cXitFygsL0%3D

    Article  PubMed  CAS  Google Scholar 

  17. Rupert P B, Ferre-D’Amare A R. Crystal structure of a hairpin ribozyme-inhibitor complex with implications for catalysis. Nature, 2001, 410(6830): 780–786 11298439, 10.1038/35071009, 1:CAS:528:DC%2BD3MXjtVemurw%3D

    Article  PubMed  CAS  Google Scholar 

  18. Lafontaine D A, Norman D G, Lilley D M. Structure, folding and activity of the VS ribozyme: importance of the 2-3-6 helical junction. EMBO J, 2001, 20(6): 1415–1424 11250907, 10.1093/emboj/20.6.1415, 1:CAS:528:DC%2BD3MXisVCktrw%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  19. Andersen A A, Collins R A. Rearrangement of a stable RNA secondary structure during VS ribozyme catalysis. Mol Cell, 2000, 5(3): 469–478 10882132, 10.1016/S1097-2765(00)80441-4, 1:CAS:528:DC%2BD3cXisVWrsrY%3D

    Article  PubMed  CAS  Google Scholar 

  20. Hiley S L, Sood V D, Fan J, et al. 4-thio-U cross-linking identifies the active site of the VS ribozyme. Embo J, 2002, 21(17): 4691–4698 12198171, 10.1093/emboj/cdf462, 1:CAS:528:DC%2BD38Xms1Kmsrk%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  21. Hoffmann B, Mitchell G T, Gendron P, et al. NMR structure of the active conformation of the Varkud satellite ribozyme cleavage site. Proc Natl Acad Sci USA, 2003, 100(12): 7003–7008 12782785, 10.1073/pnas.0832440100, 1:CAS:528:DC%2BD3sXkslOntLc%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  22. Perrotta A T, Been M D. A pseudoknot-like structure required for efficient self-cleavage of hepatitis delta virus RNA. Nature, 1991, 350(6317): 434–436 2011192, 10.1038/350434a0, 1:CAS:528:DyaK3MXitVWru7s%3D

    Article  PubMed  CAS  Google Scholar 

  23. Ferre-D’Amare A R, Zhou K, Doudna J A. Crystal structure of a hepatitis delta virus ribozyme. Nature, 1998, 395(6702): 567–574 9783582, 10.1038/26912, 1:CAS:528:DyaK1cXms1aks74%3D

    Article  PubMed  Google Scholar 

  24. Das S R, Piccirilli J A. General acid catalysis by the hepatitis delta virus ribozyme. Nat Chem Biol, 2005, 1(1): 45–52 16407993, 10.1038/nchembio703, 1:CAS:528:DC%2BD2MXls1Omsrc%3D

    Article  PubMed  CAS  Google Scholar 

  25. Ke A, Zhou K, Ding F, et al. A conformational switch controls hepatitis delta virus ribozyme catalysis. Nature, 2004, 429(6988): 201–205 15141216, 10.1038/nature02522, 1:CAS:528:DC%2BD2cXjvVKgsbw%3D

    Article  PubMed  CAS  Google Scholar 

  26. Xiao S, Scott F, Fierke C A, et al. Eukaryotic ribonuclease P: a plurality of ribonucleoprotein enzymes. Annu Rev Biochem, 2002, 71: 165–189 12045094, 10.1146/annurev.biochem.71.110601.135352, 1:CAS:528:DC%2BD38Xos1ClsbY%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  27. Harris M E, Christian E L. Recent insights into the structure and function of the ribonucleoprotein enzyme ribonuclease P. Curr Opin Struct Biol, 2003, 13(3): 325–333 12831883, 10.1016/S0959-440X(03)00069-1, 1:CAS:528:DC%2BD3sXkvVKnsrg%3D

    Article  PubMed  CAS  Google Scholar 

  28. Kazantsev A V, Krivenko A A, Harrington D J, et al. Crystal structure of a bacterial ribonuclease P RNA. Proc Natl Acad Sci USA, 2005, 102(38): 13392–13397 16157868, 10.1073/pnas.0506662102, 1:CAS:528:DC%2BD2MXhtVygsbnK

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  29. Torres-Larios A, Swinger K K, Krasilnikov A S, et al. Crystal structure of the RNA component of bacterial ribonuclease P. Nature, 2005, 437(7058): 584–587 16113684, 10.1038/nature04074, 1:CAS:528:DC%2BD2MXhtVajs7vE

    Article  PubMed  CAS  Google Scholar 

  30. Brannvall M, Kikovska E, Kirsebom L. Cross talk between the +73/294 interaction and the cleavage site in RNase P RNA mediated cleavage. Nucleic Acids Res, 2004, 32: 5418–5429 15477392, 10.1093/nar/gkh883

    Article  PubMed Central  PubMed  Google Scholar 

  31. Busch S, Kirsebom L, Notbohm H, et al. Differential role of the intermolecular base-pairs G292-C(75) and G293-C(74) in the reaction catalyzed by Escherichia coli RNase P RNA. J Mol Biol, 2000, 299: 941–951 10843849, 10.1006/jmbi.2000.3789, 1:CAS:528:DC%2BD3cXjvVSku7Y%3D

    Article  PubMed  CAS  Google Scholar 

  32. Evans D, Marquez S M, Pace N R. RNase P: interface of the RNA and protein worlds. Trends Biochem Sci, 2006, 31(6): 333–341 16679018, 10.1016/j.tibs.2006.04.007, 1:CAS:528:DC%2BD28XlvFyrsbk%3D

    Article  PubMed  CAS  Google Scholar 

  33. Cech T R. Self-splicing of group I introns. Annu Rev Biochem, 1990, 59: 543–568 2197983, 10.1146/annurev.bi.59.070190.002551, 1:CAS:528:DyaK3cXltFSjsbY%3D

    Article  PubMed  CAS  Google Scholar 

  34. Doherty E A, Doudna J A. Ribozyme structures and mechanisms. Annu Rev Biochem, 2000, 69: 597–615 10966470, 10.1146/annurev.biochem.69.1.597, 1:CAS:528:DC%2BD3cXnt1ajur4%3D

    Article  PubMed  CAS  Google Scholar 

  35. Scott W G. Ribozymes. Curr Opin Struct Biol, 2007, 17(3): 280–286 17572081, 10.1016/j.sbi.2007.05.003, 1:CAS:528:DC%2BD2sXnsFKlu7k%3D

    Article  PubMed  CAS  Google Scholar 

  36. Shan S, Yoshida A, Sun S, et al. Three metal ions at the active site of the Tetrahymena group I ribozyme. Proc Natl Acad Sci USA, 1999, 96: 12299–12304 10535916, 10.1073/pnas.96.22.12299, 1:CAS:528:DyaK1MXnt1yrt7k%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  37. Strobel S, Ortoleva-Donnelly L. A hydrogen-bonding triad stabilizes the chemical transition state of a group I ribozyme. Chem Biol, 1999, 6: 153–165 10074469, 10.1016/S1074-5521(99)89007-3, 1:CAS:528:DyaK1MXhs1yqs78%3D

    Article  PubMed  CAS  Google Scholar 

  38. Michel F, Westhof E. Modelling of the three-dimensional architecture of group I catalytic introns based on comparative sequence analysis. J Mol Biol, 1990, 216(3): 585–610 2258934, 10.1016/0022-2836(90)90386-Z, 1:CAS:528:DyaK3MXps1agtw%3D%3D

    Article  PubMed  CAS  Google Scholar 

  39. Adams P L, Stahley M R, Kosek A B, et al. Crystal structure of a self-splicing group I intron with both exons. Nature, 2004, 430(6995): 45–50 15175762, 10.1038/nature02642, 1:CAS:528:DC%2BD2cXlt1CqtL8%3D

    Article  PubMed  CAS  Google Scholar 

  40. Cate J H, Gooding A R, Podell E, et al. Crystal structure of a group I ribozyme domain: principles of RNA packing. Science, 1996, 273(5282): 1678–1685 8781224, 10.1126/science.273.5282.1678, 1:CAS:528:DyaK28XlslGqu7s%3D

    Article  PubMed  CAS  Google Scholar 

  41. Golden B L, Gooding A R, Podell E R, et al. A preorganized active site in the crystal structure of the Tetrahymena ribozyme. Science, 1998, 282(5387): 259–264 9841391, 10.1126/science.282.5387.259, 1:CAS:528:DyaK1cXmsF2jtLs%3D

    Article  PubMed  CAS  Google Scholar 

  42. Golden B L, Kim H, Chase E. Crystal structure of a phage Twort group I ribozyme-product complex. Nat Struct Mol Biol, 2005, 12(1): 82–89 15580277, 10.1038/nsmb868, 1:CAS:528:DC%2BD2MXhtVWltr8%3D

    Article  PubMed  CAS  Google Scholar 

  43. Engelhardt M A, Doherty E A, Knitt D S, et al. The P5abc peripheral element facilitates preorganization of the tetrahymena group I ribozyme for catalysis. Biochemistry, 2000, 39(10): 2639–2651 10704214, 10.1021/bi992313g, 1:CAS:528:DC%2BD3cXhtFWmtrg%3D

    Article  PubMed  CAS  Google Scholar 

  44. Johnson T H, Tijerina P, Chadee A B, et al. Structural specificity conferred by a group I RNA peripheral element. Proc Natl Acad Sci USA, 2005, 102(29): 10176–10181 16009943, 10.1073/pnas.0501498102, 1:CAS:528:DC%2BD2MXmvVelu78%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  45. Xiao M, Li T, Yuan X, et al. A peripheral element assembles the compact core structure essential for group I intron self-splicing. Nucleic Acids Res, 2005, 33(14): 4602–4611 16100381, 10.1093/nar/gki770, 1:CAS:528:DC%2BD2MXovVKqtL0%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  46. Pichler A, Schroeder R. Folding problems of the 5′ splice site containing the P1 stem of the group I thymidylate synthase intron: substrate binding inhibition in vitro and mis-splicing in vivo. J Biol Chem, 2002, 277(20): 17987–17993 11867626, 10.1074/jbc.M111798200, 1:CAS:528:DC%2BD38XktVCnur4%3D

    Article  PubMed  CAS  Google Scholar 

  47. Szewczak A A, Ortoleva-Donnelly L, Ryder S P, et al. A minor groove RNA triple helix within the catalytic core of a group I intron. Nat Struct Biol, 1998, 5(12): 1037–1042 9846872, 10.1038/4146, 1:CAS:528:DyaK1cXnvFOlu78%3D

    Article  PubMed  CAS  Google Scholar 

  48. Burke J M, Esherick J S, Burfeind W R, et al. A 3′ splice site-binding sequence in the catalytic core of a group I intron. Nature, 1990, 344(6261): 80–82 2406615, 10.1038/344080a0, 1:CAS:528:DyaK3cXhsFaksbo%3D

    Article  PubMed  CAS  Google Scholar 

  49. Chowrira B M, Berzal-Herranz A, Burke J M. Novel system for analysis of group I 3′ splice site reactions based on functional trans-interaction of the P1/P10 reaction helix with the ribozyme’s catalytic core. Nucleic Acids Res, 1995, 23(5): 849–855 7708502, 10.1093/nar/23.5.849, 1:CAS:528:DyaK2MXkvVOltLY%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  50. Guo F, Gooding A R, Cech T R. Structure of the Tetrahymena ribozyme: base triple sandwich and metal ion at the active site. Mol Cell, 2004, 16(3): 351–362 15525509, 1:CAS:528:DC%2BD2cXhtVWhtr7E

    PubMed  CAS  Google Scholar 

  51. Zhaxybayeva O, Gogarten J P. Spliceosomal introns: new insights into their evolution. Curr Biol, 2003, 13(19): R764–766 14521854, 10.1016/j.cub.2003.09.017, 1:CAS:528:DC%2BD3sXnvVOmtro%3D

    Article  PubMed  CAS  Google Scholar 

  52. Griffin E A Jr, Qin Z, Michels W J Jr, et al. Group II intron ribozymes that cleave DNA and RNA linkages with similar efficiency, and lack contacts with substrate 2′-hydroxyl groups. Chem Biol, 1995, 2(11): 761–770 9383483, 10.1016/1074-5521(95)90104-3, 1:CAS:528:DyaK2MXps1KnsLk%3D

    Article  PubMed  CAS  Google Scholar 

  53. Qin P Z, Pyle A M. The architectural organization and mechanistic function of group II intron structural elements. Curr Opin Struct Biol, 1998, 8(3): 301–308 9666325, 10.1016/S0959-440X(98)80062-6, 1:CAS:528:DyaK1cXks1eguro%3D

    Article  PubMed  CAS  Google Scholar 

  54. de Lencastre A, Pyle A M. Three essential and conserved regions of the group II intron are proximal to the 5′-splice site. RNA, 2008, 14(1): 11–24 18039742, 10.1261/rna.774008

    Article  PubMed Central  PubMed  Google Scholar 

  55. Wank H, SanFilippo J, Singh R N, et al. A reverse transcriptase/maturase promotes splicing by binding at its own coding segment in a group II intron RNA. Mol Cell, 1999, 4(2): 239–250 10488339, 10.1016/S1097-2765(00)80371-8, 1:CAS:528:DyaK1MXmtVajs7o%3D

    Article  PubMed  CAS  Google Scholar 

  56. Schmidt U, Podar M, Stahl U, et al. Mutations of the two-nucleotide bulge of D5 of a group II intron block splicing in vitro and in vivo: phenotypes and suppressor mutations. RNA, 1996, 2(11): 1161–1172 8903346, 1:CAS:528:DyaK28XmslKmsro%3D

    PubMed Central  PubMed  CAS  Google Scholar 

  57. Toor N, Keating K S, Taylor S D, et al. Crystal structure of a self-spliced group II intron. Science, 2008, 320(5872): 77–82 18388288, 10.1126/science.1153803, 1:CAS:528:DC%2BD1cXktVKhtL8%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  58. Toor N, Robart A R, Christianson J, et al. Self-splicing of a group IIC intron: 5′ exon recognition and alternative 5′ splicing events implicate the stem-loop motif of a transcriptional terminator. Nucleic Acids Res, 2006, 34(22): 6461–6471 17130159, 10.1093/nar/gkl820, 1:CAS:528:DC%2BD28XhtlCqsr3O

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  59. Costa M, Michel F, Westhof E. A three-dimensional perspective on exon binding by a group II self-splicing intron. EMBO J, 2000, 19: 12 10.1093/emboj/19.18.5007

    Article  Google Scholar 

  60. Jacquier A, Jacquesson-Breuleux N. Splice site selection and role of the lariat in a group II intron. J Mol Biol, 1991, 219: 14 10.1016/0022-2836(91)90183-7

    Article  Google Scholar 

  61. Boudvillain M, Pyle A M. Defining functional groups, core structural features and inter-domain tertiary contacts essential for group II intron self-splicing: a NAIM analysis. EMBO J, 1998, 17(23): 7091–7104 9843513, 10.1093/emboj/17.23.7091, 1:CAS:528:DyaK1MXivFCmtQ%3D%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  62. Costa M, Michel F. Frequent use of the same tertiary motif by self-folding RNAs. EMBO J, 1995, 14(6): 1276–1285 7720718, 1:CAS:528:DyaK2MXlsFSns7g%3D

    PubMed Central  PubMed  CAS  Google Scholar 

  63. Hamill S, Pyle A M. The receptor for branch-site docking within a group II intron active site. Mol Cell, 2006, 23(6): 831–840 16973435, 10.1016/j.molcel.2006.07.017, 1:CAS:528:DC%2BD28XhtVKgu7%2FE

    Article  PubMed  CAS  Google Scholar 

  64. Abramovitz D L, Friedman R A, Pyle A M. Catalytic role of 2′-hydroxyl groups within a group II intron active site. Science, 1996, 271(5254): 1410–1413 8596912, 10.1126/science.271.5254.1410, 1:CAS:528:DyaK28XhsFegtb0%3D

    Article  PubMed  CAS  Google Scholar 

  65. Konforti B B, Abramovitz D L, Duarte C M, et al. Ribozyme catalysis from the major groove of group II intron domain 5. Mol Cell, 1998, 1(3): 433–441 9660927, 10.1016/S1097-2765(00)80043-X, 1:CAS:528:DyaK1cXhtlyhur0%3D

    Article  PubMed  CAS  Google Scholar 

  66. Ban N, Nissen P, Hansen J, et al. The complete atomic structure of the large ribosomal subunit at 2.4 Å, resolution. Science, 2000, 289(5481): 905–920 10937989, 10.1126/science.289.5481.905, 1:STN:280:DC%2BD3cvgslCgsA%3D%3D

    Article  PubMed  CAS  Google Scholar 

  67. Nissen P, Hansen J, Ban N, et al. The structural basis of ribosome activity in peptide bond synthesis. Science, 2000, 289(5481): 920–930 10937990, 10.1126/science.289.5481.920, 1:CAS:528:DC%2BD3cXlvFSnurs%3D

    Article  PubMed  CAS  Google Scholar 

  68. Noller H F. RNA structure: reading the ribosome. Science, 2005, 309(5740): 1508–1514 16141058, 10.1126/science.1111771, 1:CAS:528:DC%2BD2MXpsFWisro%3D

    Article  PubMed  CAS  Google Scholar 

  69. Schuwirth B S, Borovinskaya M A, Hau C W, et al. Structures of the bacterial ribosome at 3.5 Å resolution. Science, 2005, 310(5749): 827–834 16272117, 10.1126/science.1117230, 1:CAS:528:DC%2BD2MXhtFKksLfE

    Article  PubMed  CAS  Google Scholar 

  70. Korostelev A, Trakhanov S, Laurberg M, et al. Crystal structure of a 70S ribosome-tRNA complex reveals functional interactions and rearrangements. Cell, 2006, 126(6): 1065–1077 16962654, 10.1016/j.cell.2006.08.032, 1:CAS:528:DC%2BD28XhtVCnsrrI

    Article  PubMed  CAS  Google Scholar 

  71. Selmer M, Dunham C M, Murphy F V, et al. Structure of the 70S ribosome complexed with mRNA and tRNA. Science, 2006, 313(5795): 1935–1942 16959973, 10.1126/science.1131127, 1:CAS:528:DC%2BD28XhtVSnsrbO

    Article  PubMed  CAS  Google Scholar 

  72. Dai L, Zimmerly S. ORF-less and reverse-transcriptase-encoding group II introns in archaebacteria, with a pattern of homing into related group II intron ORFs. RNA, 2003, 9(1): 14–19 12554871, 10.1261/rna.2126203, 1:CAS:528:DC%2BD3sXhtFahsrY%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  73. Lewin A S, Hauswirth W W. Ribozyme gene therapy: applications for molecular medicine. Trends Mol Med, 2001, 7(5): 221–228 11325634, 10.1016/S1471-4914(01)01965-7, 1:CAS:528:DC%2BD3MXjvFygurY%3D

    Article  PubMed  CAS  Google Scholar 

  74. Welch P J, Yei S, Barber J R. Ribozyme gene therapy for hepatitis C virus infection. Clin Diagn Virol, 1998, 10(2–3): 163–171 9741642, 10.1016/S0928-0197(98)00029-4, 1:STN:280:DyaK1cvht1KksQ%3D%3D

    Article  PubMed  CAS  Google Scholar 

  75. Duarte E A, Leavitt M C, Yamada O, et al. Hairpin ribozyme gene therapy for AIDS. Methods Mol Biol, 1997, 74: 459–468 9204461, 1:CAS:528:DyaK2sXktVWls78%3D

    PubMed  CAS  Google Scholar 

  76. Watanabe T, Sullenger B A. Induction of wild-type p53 activity in human cancer cells by ribozymes that repair mutant p53 transcripts. Proc Natl Acad Sci USA, 2000, 97: 8490–8494 10890910, 10.1073/pnas.150104097, 1:CAS:528:DC%2BD3cXlt1Ggu7k%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to QiJia Wu.

Additional information

Supported by National Natural Science Foundation of China (Grant No. 30330170) and National Key Basic Research and Development Program of China (Grant No. 2005CB724604)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, Q., Huang, L. & Zhang, Y. The structure and function of catalytic RNAs. SCI CHINA SER C 52, 232–244 (2009). https://doi.org/10.1007/s11427-009-0038-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-009-0038-z

Keywords

Navigation