Skip to main content
Log in

MicroRNA in cell differentiation and development

  • Special Topic
  • Published:
Science in China Series C: Life Sciences Aims and scope Submit manuscript

Abstract

The regulation of gene expression by microRNAs (miRNAs) is a recently discovered pattern of gene regulation in animals and plants. MiRNAs have been implicated in various aspects of animal development and cell differentiation, such as early embryonic development, neuronal development, muscle development, and lymphocyte development, by the analysis of genetic deletions of individual miRNAs in mammals. These studies show that miRNAs are key regulators in animal development and are potential causes of human diseases. Here we review some recent discoveries about the functions of miRNAs in cell differentiation and development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Esquela-Kerscher A, Slack F J. Oncomirs — microRNAs with a role in cancer. Nat Rev, 2006, 6(4): 259–269 1:CAS:528:DC%2BD28XivVyqsb8%3D, 10.1038/nri1836

    Article  CAS  Google Scholar 

  2. Lee R C, Feinbaum R L, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 1993, 75(5): 843–854 8252621, 10.1016/0092-8674(93)90529-Y, 1:CAS:528:DyaK2cXpslGqtA%3D%3D

    Article  PubMed  CAS  Google Scholar 

  3. Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell, 1993, 75(5): 855–862 8252622, 10.1016/0092-8674(93)90530-4, 1:CAS:528:DyaK2cXislyisA%3D%3D

    Article  PubMed  CAS  Google Scholar 

  4. Reinhart B J, Slack F J, Basson M, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature, 2000, 403(6772): 901–906 10706289, 10.1038/35002607, 1:CAS:528:DC%2BD3cXhs1Ors74%3D

    Article  PubMed  CAS  Google Scholar 

  5. Yoo A S, Greenwald I. LIN-12/Notch activation leads to microRNA-mediated down-regulation of Vav in C. elegans. Science, 2005, 310(5752): 1330–1333 16239437, 10.1126/science.1119481, 1:CAS:528:DC%2BD2MXht1GqsrrN

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  6. Johnson S M, Grosshans H, Shingara J, et al. RAS is regulated by the let-7 microRNA family. Cell, 2005, 120(5): 635–647 15766527, 10.1016/j.cell.2005.01.014, 1:CAS:528:DC%2BD2MXis1yhsbs%3D

    Article  PubMed  CAS  Google Scholar 

  7. Hobert O. Architecture of a microRNA-controlled gene regulatory network that diversifies neuronal cell fates. Cold Spring Harb Symp Quant Biol, 2006, 71181–188

  8. Ronshaugen M, Biemar F, Piel J, et al. The Drosophila microRNA iab-4 causes a dominant homeotic transformation of halteres to wings. Genes Dev, 2005, 19(24): 2947–2952 16357215, 10.1101/gad.1372505, 1:CAS:528:DC%2BD28XmtFw%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  9. Leaman D, Chen P Y, Fak J, et al. Antisense-mediated depletion reveals essential and specific functions of microRNAs in Drosophila development. Cell, 2005, 121(7): 1097–1108 15989958, 10.1016/j.cell.2005.04.016, 1:CAS:528:DC%2BD2MXmtF2ntr0%3D

    Article  PubMed  CAS  Google Scholar 

  10. Brennecke J, Hipfner D R, Stark A, et al. bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell, 2003, 113(1): 25–36 12679032, 10.1016/S0092-8674(03)00231-9, 1:CAS:528:DC%2BD3sXjtVWqsL0%3D

    Article  PubMed  CAS  Google Scholar 

  11. Thompson B J, Cohen S M. The Hippo pathway regulates the ban tam microRNA to control cell proliferation and apoptosis in Drosophila. Cell, 2006, 126(4): 767–774 16923395, 10.1016/j.cell.2006.07.013, 1:CAS:528:DC%2BD28Xpt1akur0%3D

    Article  PubMed  CAS  Google Scholar 

  12. Xu P, Vernooy S Y, Guo M, et al. The Drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism. Curr Biol, 2003, 13(9): 790–795 12725740, 10.1016/S0960-9822(03)00250-1, 1:CAS:528:DC%2BD3sXjsVGlurw%3D

    Article  PubMed  CAS  Google Scholar 

  13. Varghese J, Cohen S M. microRNA miR-14 acts to modulate a positive autoregulatory loop controlling steroid hormone signaling in Drosophila. Genes Dev, 2007, 21(18): 2277–2282 17761811, 10.1101/gad.439807, 1:CAS:528:DC%2BD2sXhtV2qtrjN

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  14. Lai E C, Tam B, Rubin G M. Pervasive regulation of Drosophila Notch target genes by GY-box-, Brd-box-, and K-box-class microRNAs. Genes Dev, 2005, 19(9): 1067–1080 15833912, 10.1101/gad.1291905, 1:CAS:528:DC%2BD2MXkt1Cgsrg%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  15. Li X, Carthew R W. A microRNA mediates EGF receptor signaling and promotes photoreceptor differentiation in the Drosophila eye. Cell, 2005, 123(7): 1267–1277 16377567, 10.1016/j.cell.2005.10.040, 1:CAS:528:DC%2BD28XktlWitA%3D%3D

    Article  PubMed  CAS  Google Scholar 

  16. Bernstein E, Kim S Y, Carmell M A, et al. Dicer is essential for mouse development. Nat Genet, 2003, 35(3): 215–217 14528307, 10.1038/ng1253, 1:CAS:528:DC%2BD3sXosFWrtrs%3D

    Article  PubMed  CAS  Google Scholar 

  17. Kanellopoulou C, Muljo S A, Kung A L et al. Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev, 2005, 19(4): 489–501 15713842, 10.1101/gad.1248505, 1:CAS:528:DC%2BD2MXhs1OhsL4%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  18. Wang Y, Medvid R, Melton C, et al. DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal. Nat Genet, 2007, 39(3): 380–385 17259983, 10.1038/ng1969, 1:CAS:528:DC%2BD2sXitVOktrw%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  19. Faure S, Lee M A, Keller T, et al. Endogenous patterns of TGFbeta superfamily signaling during early Xenopus development. Development, 2000, 127(13): 2917–2931 10851136, 1:CAS:528:DC%2BD3cXlt1Gmt7Y%3D

    PubMed  CAS  Google Scholar 

  20. Agius E, Oelgeschlager M, Wessely O, et al. Endodermal Nodal-related signals and mesoderm induction in Xenopus. Development, 2000, 127(6): 1173–1183 10683171, 1:CAS:528:DC%2BD3cXisVyhtbc%3D

    PubMed Central  PubMed  CAS  Google Scholar 

  21. Martello G, Zacchigna L, Inui M, et al. MicroRNA control of Nodal signalling. Nature, 2007, 449(7159): 183–188 17728715, 10.1038/nature06100, 1:CAS:528:DC%2BD2sXhtVagtbrM

    Article  PubMed  CAS  Google Scholar 

  22. Giraldez A J, Cinalli R M, Glasner M E, et al. MicroRNAs regulate brain morphogenesis in zebrafish. Science, 2005, 308(5723): 833–838 15774722, 10.1126/science.1109020, 1:CAS:528:DC%2BD2MXjvVantrY%3D

    Article  PubMed  CAS  Google Scholar 

  23. Choi W Y, Giraldez A J, Schier A F. Target protectors reveal dampening and balancing of Nodal agonist and antagonist by miR-430. Science, 2007, 318(5848): 271–274 17761850, 10.1126/science.1147535, 1:CAS:528:DC%2BD2sXhtFCjt7rI

    Article  PubMed  CAS  Google Scholar 

  24. Lagos-Quintana M, Rauhut R, Meyer J, et al. New microRNAs from mouse and human. RNA, 2003, 9(2): 175–179 12554859, 10.1261/rna.2146903, 1:CAS:528:DC%2BD3sXhtVWnu7o%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  25. Sempere L F, Freemantle S, Pitha-Rowe I, et al. Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol, 2004, 5(3): R13 15003116, 10.1186/gb-2004-5-3-r13

    Article  PubMed Central  PubMed  Google Scholar 

  26. Lim L P, Lau N C, Garrett-Engele P, et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature, 2005, 433(7027): 769–773 15685193, 10.1038/nature03315, 1:CAS:528:DC%2BD2MXhtleqsLs%3D

    Article  PubMed  CAS  Google Scholar 

  27. Makeyev E V, Zhang J, Carrasco M A, et al. The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol Cell, 2007, 27(3): 435–448 17679093, 10.1016/j.molcel.2007.07.015, 1:CAS:528:DC%2BD2sXptlymsrk%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  28. Boutz P L, Stoilov P, Li Q, et al. A post-transcriptional regulatory switch in polypyrimidine tract-binding proteins reprograms alternative splicing in developing neurons. Genes Dev, 2007, 21(13): 1636–1652 17606642, 10.1101/gad.1558107, 1:CAS:528:DC%2BD2sXns1yht7k%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  29. Boutz P L, Chawla G, Stoilov P, et al. MicroRNAs regulate the expression of the alternative splicing factor nPTB during muscle development. Genes Dev, 2007, 21(1): 71–84 17210790, 10.1101/gad.1500707, 1:CAS:528:DC%2BD2sXmsFylug%3D%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  30. Coulson J M. Transcriptional regulation: cancer, neurons and the REST. Curr Biol, 2005, 15(17): R665–668 16139198, 10.1016/j.cub.2005.08.032, 1:CAS:528:DC%2BD2MXpslyiur8%3D

    Article  PubMed  CAS  Google Scholar 

  31. Visvanathan J, Lee S, Lee B, et al. The microRNA miR-124 antagonizes the anti-neural REST/SCP1 pathway during embryonic CNS development. Genes Dev, 2007, 21(7): 744–749 17403776, 10.1101/gad.1519107, 1:CAS:528:DC%2BD2sXktFGgs78%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  32. Zhao Y, Ransom J F, Li A, et al. Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1–2. Cell, 2007, 129(2): 303–317 17397913, 10.1016/j.cell.2007.03.030, 1:CAS:528:DC%2BD2sXlsVWls7o%3D

    Article  PubMed  CAS  Google Scholar 

  33. Chen J F, Mandel E M, Thomson J M, et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet, 2006, 38(2): 228–233 16380711, 10.1038/ng1725, 1:CAS:528:DC%2BD28XotlGktg%3D%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  34. Zhao Y, Samal E, Srivastava D. Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature, 2005, 436(7048): 214–220 15951802, 10.1038/nature03817, 1:CAS:528:DC%2BD2MXmtVersrc%3D

    Article  PubMed  CAS  Google Scholar 

  35. Yang B, Lin H, Xiao J, et al. The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nat Med, 2007, 13(4): 486–491 17401374, 10.1038/nm1569, 1:CAS:528:DC%2BD2sXjvVaqurs%3D

    Article  PubMed  CAS  Google Scholar 

  36. Clop A, Marcq F, Takeda H, et al. A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nat Genet, 2006, 38(7): 813–818 16751773, 10.1038/ng1810, 1:CAS:528:DC%2BD28XmtFyrurk%3D

    Article  PubMed  CAS  Google Scholar 

  37. Chen C Z, Li L, Lodish H F, et al. MicroRNAs modulate hematopoietic lineage differentiation. Science, 2004, 303(5654): 83–86 14657504, 10.1126/science.1091903, 1:CAS:528:DC%2BD3sXhtVWhs7zE

    Article  PubMed  CAS  Google Scholar 

  38. Monticelli S, Ansel K M, Xiao C, et al. MicroRNA profiling of the murine hematopoietic system. Genome Biol, 2005, 6(8): R71 16086853, 10.1186/gb-2005-6-8-r71, 1:CAS:528:DC%2BD2MXpsFKisLk%3D

    Article  PubMed Central  PubMed  Google Scholar 

  39. Neilson J R, Zheng G X, Burge C B, et al. Dynamic regulation of miRNA expression in ordered stages of cellular development. Genes Dev, 2007, 21(5): 578–589 17344418, 10.1101/gad.1522907, 1:CAS:528:DC%2BD2sXjsVSqtbw%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  40. Li Q J, Chau J, Ebert P J, et al. miR-181a is an intrinsic modulator of T cell sensitivity and selection. Cell, 2007, 129(1): 147–161 17382377, 10.1016/j.cell.2007.03.008, 1:CAS:528:DC%2BD2sXkvVeltLc%3D

    Article  PubMed  CAS  Google Scholar 

  41. Clurman B E, Hayward W S. Multiple proto-oncogene activations in avian leukosis virus-induced lymphomas: evidence for stage-specific events. Mol Cell Biol, 1989, 9(6): 2657–2664 2548084, 1:CAS:528:DyaL1MXktlOhsbw%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  42. Tam W, Ben-Yehuda D, Hayward W S. bic, a novel gene activated by proviral insertions in avian leukosis virus-induced lymphomas, is likely to function through its noncoding RNA. Mol Cell Biol, 1997, 17(3): 1490–1502 9032277, 1:CAS:528:DyaK2sXhtlGmur8%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  43. Metzler M, Wilda M, Busch K, et al. High expression of precursor microRNA-155/BIC RNA in children with Burkitt lymphoma. Genes Chromosomes Cancer, 2004, 39(2): 167–169 14695998, 10.1002/gcc.10316, 1:CAS:528:DC%2BD2cXjtVWqtrY%3D

    Article  PubMed  CAS  Google Scholar 

  44. Haasch D, Chen Y W, Reilly R M, et al. T cell activation induces a noncoding RNA transcript sensitive to inhibition by immunosuppressant drugs and encoded by the proto-oncogene, BIC. Cell Immunol, 2002, 217(1–2): 78–86 12426003, 10.1016/S0008-8749(02)00506-3, 1:CAS:528:DC%2BD38XosVers7w%3D

    Article  PubMed  CAS  Google Scholar 

  45. O’Connell R M, Taganov K D, Boldin M P, et al. MicroRNA-155 is induced during the macrophage inflammatory response. Proc Natl Acad Sci USA, 2007, 104(5): 1604–1609 17242365, 10.1073/pnas.0610731104, 1:CAS:528:DC%2BD2sXhslejtLo%3D

    Article  PubMed Central  PubMed  Google Scholar 

  46. Iorio M V, Ferracin M, Liu C G, et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res, 2005, 65(16): 7065–7070 16103053, 10.1158/0008-5472.CAN-05-1783, 1:CAS:528:DC%2BD2MXns1WrtL8%3D

    Article  PubMed  CAS  Google Scholar 

  47. Eis P S, Tam W, Sun L, et al. Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proc Natl Acad Sci USA, 2005, 102(10): 3627–3632 15738415, 10.1073/pnas.0500613102, 1:CAS:528:DC%2BD2MXisVOgsL8%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  48. van den Berg A, Kroesen B J, Kooistra K, et al. High expression of B-cell receptor inducible gene BIC in all subtypes of Hodgkin lym phoma. Genes Chromosomes Cancer, 2003, 37(1): 20–28 12661002, 10.1002/gcc.10186, 1:CAS:528:DC%2BD3sXjtlOhu78%3D

    Article  PubMed  Google Scholar 

  49. Kluiver J, Haralambieva E, de Jong D, et al. Lack of BIC and microRNA miR-155 expression in primary cases of Burkitt lymphoma. Genes Chromosomes Cancer, 2006, 45(2): 147–153 16235244, 10.1002/gcc.20273, 1:CAS:528:DC%2BD28Xot1yitw%3D%3D

    Article  PubMed  CAS  Google Scholar 

  50. Kluiver J, Poppema S, de Jong D, et al. BIC and miR-155 are highly expressed in Hodgkin, primary mediastinal and diffuse large B cell lymphomas. J Pathol, 2005, 207(2): 243–249 16041695, 10.1002/path.1825, 1:CAS:528:DC%2BD2MXhtFKnsr%2FI

    Article  PubMed  CAS  Google Scholar 

  51. Yanaihara N, Caplen N, Bowman E, et al. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell, 2006, 9(3): 189–198 16530703, 10.1016/j.ccr.2006.01.025, 1:CAS:528:DC%2BD28XivFWjtLw%3D

    Article  PubMed  CAS  Google Scholar 

  52. Thai T H, Calado D P, Casola S, et al. Regulation of the germinal center response by microRNA-155. Science, 2007, 316(5824): 604–608 17463289, 10.1126/science.1141229, 1:CAS:528:DC%2BD2sXksFeksbs%3D

    Article  PubMed  CAS  Google Scholar 

  53. Rodriguez A, Vigorito E, Clare S et al. Requirement of bic/mibic/microRNA-155 for normal immune function. Science, 2007, 316(5824): 608–611 17463290, 10.1126/science.1139253, 1:CAS:528:DC%2BD2sXksFeksbg%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  54. Morita S, Horii T, Kimura M, et al. One Argonaute family member, Eif2c2 (Ago2), is essential for development and appears not to be involved in DNA methylation. Genomics, 2007, 89(6): 687–696 17418524, 10.1016/j.ygeno.2007.01.004, 1:CAS:528:DC%2BD2sXltFygtrk%3D

    Article  PubMed  CAS  Google Scholar 

  55. Xiao C, Calado D P, Galler G, et al. MiR-150 controls B cell differentiation by targeting the transcription factor c-Myb. Cell, 2007, 131(1): 146–159 17923094, 10.1016/j.cell.2007.07.021, 1:CAS:528:DC%2BD2sXht1CntLnE

    Article  PubMed  CAS  Google Scholar 

  56. Wang S, Aurora A B, Johnson B A, et al. The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev Cell, 2008, 15(2): 261–271 18694565, 10.1016/j.devcel.2008.07.002, 1:CAS:528:DC%2BD1cXhtVehtL%2FJ

    Article  PubMed Central  PubMed  Google Scholar 

  57. Johnnidis J B, Harris M H, Wheeler R T, et al. Regulation of progenitor cell proliferation and granulocyte function by microRNA-223. Nature, 2008, 451(7182): 1125–1129 18278031, 10.1038/nature06607, 1:CAS:528:DC%2BD1cXisFWjtrY%3D

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YouXin Jin.

Additional information

Supported by National Key Basic Research and Development Program of China (Grant No. 2005CB724602) and Knowledge Innovation Project of the Chinese Academy of Sciences (Grant Nos. KSCX2-YW-R-096, KSCX1-YW-R-64)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, Y., Jin, Y. MicroRNA in cell differentiation and development. SCI CHINA SER C 52, 205–211 (2009). https://doi.org/10.1007/s11427-009-0040-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-009-0040-5

Keywords

Navigation