Skip to main content
Log in

Understanding the physics of DNA using nanoscale single-molecule manipulation

  • Perspective
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Processes for decoding the genetic information in cells, including transcription, replication, recombination and repair, involve the deformation of DNA from its equilibrium structures such as bending, stretching, twisting, and unzipping of the double helix. Single-molecule manipulation techniques have made it possible to control DNA conformation and simultaneously detect the induced changes, revealing a rich variety of mechanically-induced conformational changes and thermodynamic states. These single-molecule techniques helped us to reveal the physics of DNA and the processes involved in the passing on of the genetic code.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. E. Hogan and R. H. Austin, Nature, 1987, 329(6136): 263

    Article  ADS  Google Scholar 

  2. S. D. Goodman and H. A. Nash, Nature, 1989, 341(6239): 251

    Article  ADS  Google Scholar 

  3. A. Stasiak and E. D. Capua, Nature, 1982, 299(5879): 185

    Article  ADS  Google Scholar 

  4. M. Hegner, S. B. Smith, and C. Bustamante, Proc. Natl. Acad. Sci. USA, 1999, 96(18): 10109

    Article  ADS  Google Scholar 

  5. D. S. Johnson, L. Bai, B. Y. Smith, S. S. Patel, and M. D. Wang, Cell, 2007, 129(7): 1299

    Article  Google Scholar 

  6. V. A. Bloomfield, D. M. Crothers, and I. Tinoco Jr., Nucleic Acids: Structures, Properties, and Functions, Sausalito, California: University Science Books, 2000

    Google Scholar 

  7. C. G. Baumann, S. B. Smith, V. A. Bloomfield, and C. Bustamante, Proc. Natl. Acad. Sci. USA, 1997, 94(12): 6185

    Article  ADS  Google Scholar 

  8. D. E. Smith, S. J. Tans, S. B. Smith, S. Grimes, D. L. Anderson, and C. Bustamante, Nature, 2001, 413(6857): 748

    Article  ADS  Google Scholar 

  9. D. N. Fuller, D. M. Raymer, V. I. Kottadiel, V. B. Rao, and D. E. Smith, Proc. Natl. Acad. Sci. USA, 2007, 104(43): 16868

    Article  ADS  Google Scholar 

  10. D. N. Fuller, J. P. Rickgauer, P. J. Jardine, S. Grimes, D. L. Anderson, and D. E. Smith, Proc. Natl. Acad. Sci. USA, 2007, 104(27): 11245

    Article  ADS  Google Scholar 

  11. G. Felsenfeld and M. Groudine, Nature, 2003, 421(6921): 448

    Article  ADS  Google Scholar 

  12. B. D. Brower-Toland, C. L. Smith, R. C. Yeh, J. T. Lis, C. L. Peterson, and M. D. Wang, Proc. Natl. Acad. Sci. USA, 2002, 99(4): 1960

    Article  ADS  Google Scholar 

  13. T. R. Strick, V. Croquette, and D. Bensimon, Nature, 2000, 404(6780): 901

    Article  ADS  Google Scholar 

  14. E. A. Abbondanzieri, W. J. Greenleaf, J. W. Shaevitz, R. Landick, and S. M. Block, Nature, 2005, 438(7067): 460

    Article  ADS  Google Scholar 

  15. G. J. L. Wuite, S. B. Smith, M. Young, D. Keller, and C. Bustamante, Nature, 2000, 404(6773): 103

    Article  ADS  Google Scholar 

  16. K. Luger, A. W. Mäder, R. K. Richmond, D. F. Sargent, and T. J. Richmond, Nature, 1997, 389(6648): 251

    Article  ADS  Google Scholar 

  17. W. D. Volkmuth and R. H. Austin, Nature, 1992, 358(6387): 600

    Article  ADS  Google Scholar 

  18. J. O. Tegenfeldt, C. Prinz, H. Cao, S. Chou, W. W. Reisner, R. Riehn, Y.M. Wang, E. C. Cox, J. C. Sturm, P. Silberzan, and R. H. Austin, Proc. Natl. Acad. Sci. USA, 2004, 101(30): 10979

    Article  ADS  Google Scholar 

  19. W. Reisner, K. J. Morton, R. Riehn, Y. M. Wang, Z. Yu, M. Rosen, J. C. Sturm, S. Y. Chou, E. Frey, and R. H. Austin, Phys. Rev. Lett., 2005, 94(19): 196101

    Article  ADS  Google Scholar 

  20. A. F. Sauer-Budge, J. A. Nyamwanda, D. K. Lubensky, and D. Branton, Phys. Rev. Lett., 2003, 90(23): 238101

    Article  ADS  Google Scholar 

  21. W.-S. Chen,W.-H. Chen, Z. Chen, A. A. Gooding, K.-J. Lin, and C.-H. Kiang, Phys. Rev. Lett., 2010, 105(21): 218104

    Article  ADS  Google Scholar 

  22. T. Lionnet, S. Joubaud, R. Lavery, D. Bensimon, and V. Croquette, Phys. Rev. Lett., 2006, 96(17): 178102

    Article  ADS  Google Scholar 

  23. J. L. Hutter and J. Bechhoefer, Rev. Sci. Instrum., 1993, 64(7): 1868

    Article  ADS  Google Scholar 

  24. M. Rief, H. Clausen-Schaumann, and H. E. Gaub, Nat. Struct. Biol., 1999, 6(4): 346

    Article  Google Scholar 

  25. D. B. Staple, M. Loparic, H. J. Kreuzer, and L. Kreplak, Phys. Rev. Lett., 2009, 102(12): 128302

    Article  ADS  Google Scholar 

  26. S. Lv, D. M. Dudek, Y. Cao, M. M. Balamurali, J. Gosline, and H. Li, Nature, 2010, 465(7294): 69

    Article  ADS  Google Scholar 

  27. K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, Biophys. J., 1999, 77(5): 2856

    Article  Google Scholar 

  28. D. Koirala, S. Dhakal, B. Ashbridge, Y. Sannohe, R. Rodriguez, H. Sugiyama, S. Balasubramanian, and H. Mao, Nat. Chem., 2011, 3(10): 782

    Article  Google Scholar 

  29. T. Gibaud, E. Barry, M. J. Zakhary, M. Henglin, A. Ward, Y. Yang, C. Berciu, R. Oldenbourg, M. F. Hagan, D. Nicastro, R. B. Meyer, and Z. Dogic, Nature, 2012, 481(7381): 348

    ADS  Google Scholar 

  30. S. B. Smith, Y. J. Cui, and C. Bustamante, Science, 1996, 271(5250): 795

    Article  ADS  Google Scholar 

  31. T. Strick, J. Allemand, V. Croquette, and D. Bensimon, Prog. Biophys. Mol. Biol., 2000, 74(1–2): 115

    Article  Google Scholar 

  32. J. Lipfert, M. Wiggin, J. W. Kerssemakers, F. Pedaci, and N. H. Dekker, Nat. Commun., 2011, 2: 439

    Article  Google Scholar 

  33. T. R. Strick, J.-F. Allemand, D. Bensimon, and V. Croquette, Biophys. J., 1998, 74(4): 2016

    Article  ADS  Google Scholar 

  34. J. Yan, D. Skoko, and J. F. Marko, Phys. Rev. E, 2004, 70(1): 011905

    Article  ADS  Google Scholar 

  35. H. Chen, H. Fu, X. Zhu, P. Cong, F. Nakamura, and J. Yan, Biophys. J., 2011, 100(2): 517

    Article  ADS  Google Scholar 

  36. J. Welker and F. J. Giessibl, Science, 2012, 336(6080): 444

    Article  ADS  Google Scholar 

  37. J. Stigler, F. Ziegler, A. Gieseke, J. C. M. Gebhardt, and M. Rief, Science, 2011, 334(6055): 512

    Article  ADS  Google Scholar 

  38. A. Bérut, A. Arakelyan, A. Petrosyan, S. Ciliberto, R. Dillenschneider, and E. Lutz, Nature, 2012, 483(7388): 187

    Article  ADS  Google Scholar 

  39. E. A. Shank, C. Cecconi, J. W. Dill, S. Marqusee, and C. Bustamante, Nature, 2010, 465(7298): 637

    Article  ADS  Google Scholar 

  40. A. del Rio, R. Perez-Jimenez, R. Liu, P. Roca-Cusachs, J. M. Fernandez, and M. P. Sheetz, Science, 2009, 323(5914): 638

    Article  ADS  Google Scholar 

  41. Y. Deng, M. Sun, and J. W. Shaevitz, Phys. Rev. Lett., 2011, 107(15): 158101

    Article  ADS  Google Scholar 

  42. J. van Mameren, P. Gross, G. Farge, P. Hooijman, M. Modesti, M. Falkenberg, G. J. L. Wuite, and E. J. G. Peterman, Proc. Natl. Acad. Sci. USA, 2009, 106(43): 18231

    Article  ADS  Google Scholar 

  43. M. J. Lang, P. M. Fordyce, A.M. Engh, K. C. Neuman, and S. M. Block, Nat. Methods, 2004, 1(2): 1

    Article  Google Scholar 

  44. A. Hards, C. Zhou, M. Seitz, C. Bräuchle, and A. Zumbusch, Chem. Phys. Chem., 2005, 6(3): 534

    Article  Google Scholar 

  45. J. F. Marko and E. D. Siggia, Macromolecules, 1995, 28(26): 8759

    Article  ADS  Google Scholar 

  46. M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, Biophys. J., 1997, 72(3): 1335

    Article  ADS  Google Scholar 

  47. H. Clausen-Schaumann, M. Rief, C. Tolksdorf, and H. E. Gaub, Biophys. J., 2000, 78(4): 1997

    Article  Google Scholar 

  48. S. Cocco, J. Yan, J.-F. Léger, D. Chatenay, and J. Marko, Phys. Rev. E, 2004, 70(1): 011910

    Article  ADS  Google Scholar 

  49. C. P. Calderon, W.-H. Chen, K.-J. Lin, N. C. Harris, and C.-H. Kiang, J. Phys.: Condens. Matter, 2009, 21(3): 034114

    Article  Google Scholar 

  50. T. Odijk, Macromolecules, 1995, 28(20): 7016

    Article  ADS  Google Scholar 

  51. P. Cluzel, A. Lebrun, C. Heller, R. Lavery, J.-L. Viovy, D. Chatenay, and F. Caron, Science, 1996, 271(5250): 792

    Article  ADS  Google Scholar 

  52. H. Fu, H. Chen, J. F. Marko, and J. Yan, Nucleic Acids Res., 2010, 38(16): 5594

    Article  Google Scholar 

  53. H. Fu, H. Chen, X. Zhang, Y. Qu, J. F. Marko, and J. Yan, Nucleic Acids Res., 2011, 39(8): 3473

    Article  Google Scholar 

  54. X. Zhang, H. Chen, H. Fu, P. S. Doyle, and J. Yan, Proc. Natl. Acad. Sci. USA, 2012, 109: 8103

    Article  ADS  Google Scholar 

  55. C.-H. Ke, M. Humeniuk, H. S-Gracz, and P. E. Marszalek, Phys. Rev. Lett., 2007, 99(1): 018302

    Article  ADS  Google Scholar 

  56. B. Essevaz-Roulet, U. Bockelmann, and F. Heslot, Proc. Natl. Acad. Sci. USA, 1997, 94(22): 11935

    Article  ADS  Google Scholar 

  57. C. Danilowicz, V. W. Coljee, C. Bouzigues, D. K. Lubensky, D. R. Nelson, and M. Prentiss, Proc. Natl. Acad. Sci. USA, 2003, 100(4): 1694

    Article  ADS  Google Scholar 

  58. K. Hatch, C. Danilowicz, V. Coljee, and M. Prentiss, Phys. Rev. E, 2007, 75(5): 051908

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ching-Hwa Kiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frey, E.W., Gooding, A.A., Wijeratne, S. et al. Understanding the physics of DNA using nanoscale single-molecule manipulation. Front. Phys. 7, 576–581 (2012). https://doi.org/10.1007/s11467-012-0261-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11467-012-0261-0

Keywords

Navigation