Skip to main content
Log in

Plasmonics in Biology and Plasmon-Controlled Fluorescence

  • Review Article
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Fluorescence technology is fully entrenched in all aspects of biological research. To a significant extent, future advances in biology and medicine depend on the advances in the capabilities of fluorescence measurements. As examples, the sensitivity of many clinical assays is limited by sample autofluorescence, single-molecule detection is limited by the brightness and photostability of the fluorophores, and the spatial resolution of cellular imaging is limited to about one-half of the wavelength of the incident light. We believe a combination of fluorescence, plasmonics, and nanofabrication can fundamentally change and increase the capabilities of fluorescence technology. Surface plasmons are collective oscillations of free electrons in metallic surfaces and particles. Surface plasmons, without fluorescence, are already in use to a limited extent in biological research. These applications include the use of surface plasmon resonance to measure bioaffinity reactions and the use of metal colloids as light-scattering probes. However, the uses of surface plasmons in biology are not limited to their optical absorption or extinction. We now know that fluorophores in the excited state can create plasmons that radiate into the far field and that fluorophores in the ground state can interact with and be excited by surface plasmons. These reciprocal interactions suggest that the novel optical absorption and scattering properties of metallic nanostructures can be used to control the decay rates, location, and direction of fluorophore emission. We refer to these phenomena as plasmon-controlled fluorescence (PCF). We predict that PCF will result in a new generation of probes and devices. These likely possibilities include ultrabright single-particle probes that do not photobleach, probes for selective multiphoton excitation with decreased light intensities, and distance measurements in biomolecular assemblies in the range from 10 to 200 nm. Additionally, PCF is likely to allow design of structures that enhance emission at specific wavelengths and the creation of new devices that control and transport the energy from excited fluorophores in the form of plasmons, and then convert the plasmons back to light. Finally, it appears possible that the use of PCF will allow construction of wide-field optical microscopy with subwavelength spatial resolution down to 25 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24
Figure 25
Figure 26
Figure 27
Figure 28
Figure 29
Figure 30
Figure 31
Figure 32
Figure 33
Figure 34
Figure 35
Figure 36
Figure 37
Figure 38
Figure 39
Figure 40
Figure 41
Figure 42
Figure 43
Figure 44
Figure 45

Similar content being viewed by others

References

  1. Lakowicz JR (2001) Radiative decay engineering: biophysical and biomedical applications. Anal Biochem 298:1–24

    Article  CAS  Google Scholar 

  2. Lakowicz JR, Shen Y, D'Auria S, Malicka J, Fang J, Gryczynski Z, Gryczynski I (2002) Radiative decay engineering 2. Effects of silver island films on fluorescence intensity, lifetimes, and resonance energy transfer. Anal Biochem 301:261–277

    Article  CAS  Google Scholar 

  3. Chance RR, Prock A, Silbey R (1973) Molecular fluorescenceand energy transfer near interfaces. Adv Chem Phys 37:1–65

    Article  Google Scholar 

  4. Ford GW, Weber WH (1984) Electromagnetic interactions of molecules with metal surfaces. Phys Rep 113(4):195–287

    Article  CAS  Google Scholar 

  5. Gersten J, Nitzan A (1981) Spectroscopic properties of molecules interacting with small dielectric particles. J Chem Phys 75(3):1139–1152

    Article  CAS  Google Scholar 

  6. Gersten JI (2005) Theory of fluorophore–metallic surface interactions. In: Geddes CD, Lakowicz JR (eds) Topics in Fluorescence Spectroscopy vol 8: Radiative Decay Engineering. Springer Science+Business Media, Inc, New York, pp 197–221

    Google Scholar 

  7. Geddes CD, Aslan K, Gryczynski I, Malicka J, Lakowicz JR (2005) Radiative decay engineering. In: Geddes CD, Lakowicz JR (eds) Topics in Fluorescent Spectroscopy vol 8: Radiative Decay Engineering. Springer Science+Business Media, Inc, New York, pp 405–448

    Google Scholar 

  8. Geddes CD, Aslan K, Gryczynski I, Malicka J, Lakowicz JR (2005) Noblemetal surfaces for metal enhanced fluorescence. In: Geddes CD, Lakowicz JR (eds) Topics in Fluorescent Spectroscopy, vol 8: Radiative Decay Engineering. Springer Science+Business Media, Inc., New York, pp 365–401

    Google Scholar 

  9. Lakowicz JR (2004) Radiative decay engineering 3. Surface plasmon-coupled directional emission. Anal Biochem 324:153–169

    Article  CAS  Google Scholar 

  10. Gryczynski I, Malicka J, Gryczynski Z, Lakowicz JR (2004) Radiative decay engineering 4. Experimental studies of surface plasmon coupled directional emission. Anal Biochem 324:182–270

    Article  CAS  Google Scholar 

  11. Benner RE, Dornhaus R, Chang RK (1979) Angular emission profiles of dye molecules excited by surface plasmon waves at a metal surface. Opt Commun 30(2):145–149

    Article  CAS  Google Scholar 

  12. Pockhand I, Brilliante A, Mobius D (1980) Nonradiative decay of molecular excitation at a metal interface. Nuovo Cim 63:350–357

    Article  Google Scholar 

  13. Hayashi S (2001) Spectroscopy of gap modes in metal particle–surface systems. Top Appl Phys 81:71–95

    CAS  Google Scholar 

  14. Gerbshtein YM, Merkulov IA, Mirlin DN (1975) Transfer of luminescence-center energy to surface plasmons. JETP Lett 22:35–36

    Google Scholar 

  15. Zhang J, Gryczynski Z, Lakowicz JR (2004) First observation of surface plasmon-coupled electrochemiluminescence. Chem Phys Lett 393:483–487

    Article  CAS  Google Scholar 

  16. Lakowicz JR (2005) Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission. Anal Biochem 337:171–194

    Article  CAS  Google Scholar 

  17. Bohren CF, Huffman DR (1983) Absorption and Scattering of Light by Small Particles. John Wiley & Sons, Inc., New York, pp 530

    Google Scholar 

  18. Kreibig U, Vollmer M (1995) Optical properties of metal clusters. In: Gonser U, Osgood RM, Panish MB, Sakaki H (eds) Materials Science. Springer, New York, pp 532

    Google Scholar 

  19. Born M, Wolf E (2002) Electromagnetic theory of propagation, interference and diffraction of light. In: Principles of Optics, 7th ed. Cambridge University Press, pp 952

  20. Griffiths DJ (1999) Introduction to Electrodynamics. Prentice Hall, New Jersey, pp 516

    Google Scholar 

  21. Aslan K, Leonenko Z, Lakowicz JR, Geddes CD (2005) Fast and slow deposition of silver nanorods on planar surfaces: application to metal-enhanced fluorescence. J Phys Chem B 109:3157–3162

    Article  CAS  Google Scholar 

  22. Zhang J and Lakowicz JR (2005) Enhanced luminescence of Phenyl-phenenthridine dye on aggregated small silver nanoparticles J Phys Chem B 109: 8701–8706

    Article  CAS  Google Scholar 

  23. Zhang J, Malicka J, Gryczynski I, Lakowicz JR (2005) Surface enhanced fluorescence of fluorescein-labeled oligonucleotides capped on silver nanoparticles. J Phys Chem B 109:7643–7648

    Article  CAS  Google Scholar 

  24. Zhang J, Malicka J, Gryczynski I, Lakowicz JR (2004) Oligonucleotide-displaced organic monolayer-protected silver nanoparticles and enhanced luminescence of their salted aggregates. Anal Biochem 330:81–86

    Article  CAS  Google Scholar 

  25. Tominaga J (2003) The manipulation of surface and local plasmons. In: Tsai DP (ed) Optical Nanotechnologies. Springer, New York, pp 212

    Google Scholar 

  26. Ohtsu M, Kobayashi K (2004) Introduction to classical and quantum theories of electromagnetic phenomena at the nanoscale. In: Optical Near Fields. Springer, New York, pp 205

    Google Scholar 

  27. Kawata S, Ohtsu M, Irie M (eds) (2002) Nano-Optics. Springer, New York, pp 321

  28. Wood RH (1935) Anomalous diffraction gratings. Phys Rev 48:928–937

    Article  CAS  Google Scholar 

  29. Hutley MC, Maystre D (1976) The total absorption of light by a diffraction grating. Opt Commun 19(3):431–436

    Article  Google Scholar 

  30. Ebbesen TW, Lezec HJ, Ghaemi HF, Thio T, Wolf PA (1998) Extraordinary optical transmission through sub-wavelength hole arrays. Lett Nat 390:667–669

    Article  Google Scholar 

  31. Lezec HJ, Degiron A, Devaux E, Linke RA, Martin- Moreno L, Garcia-Vidal FJ, Ebbesen TW (2002) Beaming light from a subwavelength aperture. Science 297:820– 822

    Article  CAS  Google Scholar 

  32. Sullivan DM (2000) Electromagnetic simulation using the FDTD method. In: Pollard RD, Booton R (eds) IEEE Microwave Theory and Techniques. The Institute of Electrical and Electronics Engineers, Inc, New York, pp 165

    Google Scholar 

  33. Taflove A, Hagnes SC (2000) Computational Electrodynamics: The Finite Difference Time-Domain Method, 2nd ed., Artech House, Boston and London, pp 852

    Google Scholar 

  34. Hanken DG, Jordan CE, Frey BL, Corn RM (1998) Surface plasmon resonance measurements of ultrathin organic films at electrode surfaces. Electroanal Chem 20:141–225

    CAS  Google Scholar 

  35. Ivarsson B, Malmqvist M (2002) Development and use of BIACORE instruments for biomolecular interaction analysis. In: Gizeli E, Lowe CR (eds) Biomolecular Sensors. Taylor and Francis, London, pp 322

    Google Scholar 

  36. Raether H (1988) Surface Plasmons on Smooth and Rough Surfaces and on Gratings. Springer-Verlag, New York, pp136

    Google Scholar 

  37. Raether H (1978) Surface plasma oscillations and their applications. In: Hass G, Francombe MH, Hoffman RW (eds) Physics of Thin Films. Academic Press, New York, pp 145–261

    Google Scholar 

  38. Forstmann F, Gerhardts RR (1986) Metal optics near the plasma frequency. Springer Tracts Mod Phys 109:132

    Google Scholar 

  39. Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107:668–677

    Article  CAS  Google Scholar 

  40. Bohren CF, Huffman DR (1983) Absorption and Scattering of Light by Small Particles. John Wiley and Sons, Inc., New York, pp 530

    Google Scholar 

  41. Yguerabide J, Yguerabide EE (1998) Light scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications. Anal Biochem 262:137–156

    Article  CAS  Google Scholar 

  42. Schultz DA (2003) Plasmon resonant particles for biological detection. Curr Opin Biotechnol 14:13–22

    Article  CAS  Google Scholar 

  43. Cao YW, Jin R, Mirkin CA (2001) DNA-modified core–shell Ag/Au nanoparticles. J Am Chem Soc 123:7961–7962

    Article  CAS  Google Scholar 

  44. Jin R, Wu G, Li Z, Mirkin CA, Schatz GC (2003) What controls the melting properties of DNA-linked gold nanoparticle assemblies? J Am Chem Soc 125:1643–1654

    Article  CAS  Google Scholar 

  45. Enderlein J, Zander C (2002) Theoretical foundations of single molecule detection in solutions. In: Zander Ch, Endelein J, Keller RA (eds) Single Molecule Detection in Solution. Wiley-VCH, Germany, pp 371

    Google Scholar 

  46. Schultz S, Smith SR, Mock JJ, Schulz DA (2000) Single target molecule detection with nonbleaching multicolor optical immunolabels. Proc Natl Acad Sci USA 97:996–1001

    Article  CAS  Google Scholar 

  47. Kyriacou SV, Brownlow WJ, Xu XH (2004) Using nanoparticle optics assay for direct observation of the function of antimicrobial agents in single live bacterial cells. Biochemistry 43:140–147

    Article  CAS  Google Scholar 

  48. Sokolov K, Follen M, Aaron J, Pavlova I, Malpica A, Lotan R, Richards-Kortum R (2003) Real-time vital optical imaging of precancer using anti-epidermal growth caftor receptor antibodies conjugated to gold nanoparticles. Cancer Res 63:199–2004

    Google Scholar 

  49. Mitchell JS, Wu Y, Cook CJ, Main L (2005) Sensitivity enhancement of surface plasmon resonance biosensing of small molecules. Anal Biochem 343:125–135

    Article  CAS  Google Scholar 

  50. He L, Smith EA, Natan MJ, Keating DD (2004) The distance dependence of colloidal Au-amplified surface plasmon resonance. J Phys Chem B 108:10973–10980

    Article  CAS  Google Scholar 

  51. He L, Musick MD, Nicewarner SR, Salinas FG, Benkovic SJ, Natan MJ, Keating CD (2000) Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization. J Am Chem Soc 122:9071–9077

    Article  CAS  Google Scholar 

  52. Enderlein J (2002) Spectral properties of a fluorescing molecule within a spherical metallic cavity. Phys Chem Chem Phys 4:2780–2786

    Article  CAS  Google Scholar 

  53. Enderlein J (2002) Theoretical study of single molecule flouresence in a metalic nanocavity. Appl Phys Lett 80:315–317

    Article  CAS  Google Scholar 

  54. Lakowicz JR, Malicka J, D'Auria S, Gryczynski I (2003) Release of the self-quenching of fluorescence near silver metallic surfaces. Anal Biochem 320:13–20

    Article  CAS  Google Scholar 

  55. Scheim S, Smith GB (2005) Internal electrical field densities of metal nanoshells. J Phys Chem B 109:1689–1694

    Article  CAS  Google Scholar 

  56. Jaiswal JK, Mattoussi H, Mauro JM, Simon SM (2003) Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat Biotechnol 21:47–51

    Article  CAS  Google Scholar 

  57. Osaki F, Kanamori H, Sando S, Sera T, Aoyama Y (2004) A quantum dot conjugated sugar ball and its cellular uptake. On the side effects of endocytosis in the subviral region. J Am Chem Soc 126:6520–6521

    Article  CAS  Google Scholar 

  58. Smith AM, Gao X, Nie S (2004) Quantum dot nanocrystals for in vivo molecular and cellular imaging. Photochem Photobiol 80:377–385

    CAS  Google Scholar 

  59. Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S (2005) Quantum dots for live cells in vivo imaging and diagnostics. Science 307:538–544

    Article  CAS  Google Scholar 

  60. Jiang W, Papa E, Fischer H, Mardyani S, Chan WC (2004) Semiconductor quantum dots as contrast agents for whole animal imaging. Trends Biotech 22(12):604–609

    Google Scholar 

  61. Derfus AM, Chan WC, Bhatia SN (2004) Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 4(1):11–18

    Article  CAS  Google Scholar 

  62. Murphy CJ, Coffer JL (2002) Quantum dots: a primer. Appl Spectrosc 56:16A–27A

    Article  CAS  Google Scholar 

  63. Rosenthal SJ (2001) Barcoding biomolecules with fluorescent nanocrystals. Nat Biotechnol 19:621–622

    Article  CAS  Google Scholar 

  64. Wang H, Goodrich GP, Tam F, Oubre C, Nordlander P, Halas NJ (2005) Controlled texturing modifies the surface topography and plasmonic properties of Au nanoshells. J Phys Chem B 109:11083–11087

    Article  CAS  Google Scholar 

  65. Shi W, Sahoo Y, Swihart MT, Prasad PN (2005) Gold nanoshells on polystyrene cores for control of surface plasmon resonance. Langmuir 21:1610–1617

    Article  CAS  Google Scholar 

  66. Pawley JB (ed) (1995) Handbook of Biological Confocal Microscopy, 2nd ed. Plenum Press, New York, pp 632

  67. Xu C, Webb WW (1997) Multiphoton excitation of molecular fluorophores and nonlinear laser microscopy. In: Lakowicz JR (ed) Topics in Fluorescence Spectroscop, vol 5: Nonlinear and Two-Photon Induced Fluorescence. Plenum Press, New York, pp 471–545

    Google Scholar 

  68. Wallrabe H, Periasamy A (2005) Imaging protein molecules using FRET and FLIM microscopy. Curr Opin Biotechnol 16(1):19–27

    Article  CAS  Google Scholar 

  69. Clegg RM (1996) Fluorescence resonance energy transfer. In:Wang XF, Herman B (eds) Fluorescence Imaging Spectroscopy and Microscopy. John Wiley & Sons, New York, pp473

    Google Scholar 

  70. Nelson DL, Cox MM (2005) Lehninger Principles of Biochemistry. 4th ed. WH Freeman and Co, New York

    Google Scholar 

  71. Su K-H, Wei Q-H, Zhang X, Mock JJ, Smith DR, Schultz S (2003) Interparticle coupling effects on plasmon resonances of nanogold particles. Nano Lett 3(8):1087–1090

    Article  CAS  Google Scholar 

  72. Gunnarsson L, Rindzevicius T, Prikulis J, Kasemo B, Käll M, Zou S, Schatz GC (2005) Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions. J Phys Chem B 109:1079–1087

    Article  CAS  Google Scholar 

  73. Sokolov K, Follen M, Aaron J, Pavlova I, Malpica A, Lotan R, Richards-Kortum R (2003) Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles. Cancer Res 63:199–2004

    Google Scholar 

  74. Sonnichsen C, Reinhard BM, Liphardt J, Alivistos AP (2005) A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nat Biotechnol 23(6):741–745

    Article  CAS  Google Scholar 

  75. Nordlander P, Prodan E (2004) Plasmon hybridization in nanoparticles near metallic surfaces. Nano Lett 4(11):2209–2213

    Article  CAS  Google Scholar 

  76. Rechberger W, Hohenau A, Leitner A, Krenn JR, Lamprecht B, Aussenegg FR (2003) Optical properties of two interacting gold nanoparticles. Opt Commun 220:137–141

    Article  CAS  Google Scholar 

  77. Brioude A, Jiang XC, Pileni MP (2005) Optical properties of gold nanorods: DDA simulations supported by experiments. J Phys Chem B 109:13138–13142

    Article  CAS  Google Scholar 

  78. Park SY, Stroud D (2004) Surface-plasmon dispersion relations in chains of metallic nanoparticles: an exact quasistatic calculation. Phys Rev B 69:125418-1–125418-7

    Google Scholar 

  79. Girard C, Quidant R (2004) Near-field optical transmittance of metal particle chain wavelengths. Opt Express 12:6141–6146

    Article  Google Scholar 

  80. Panoiu NC, Osgood RM (2004) Subwavelength nonlinear plasmonic nanowire. Nano Lett 4:2427–2430

    Article  CAS  Google Scholar 

  81. Hicks EM, Zou S, Schatz GC, Spears KG, van Duyne R, Gunnarson L, Rindzevicius T, Kasemo B, Kall M (2005) Controlling plasmon lineshapes through diffractive coupling linear arrays of cylindrical nanoparticles fabricated by electron beam lithography. Nano Lett 5:1065–1070

    Article  CAS  Google Scholar 

  82. Zou S, Janel N, Schatz GC (2004) Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes. J Chem Phys 120:10871–10875

    Article  CAS  Google Scholar 

  83. Mulvaney P (1996) Surface plasmon spectroscopy of nanosized metal particles. Langmuir 12:788–800

    Article  CAS  Google Scholar 

  84. Zhang H, Mirkin CA (2004) DPN-Generated nanostructuresmade of gold, silver, and palladium. Chem Mater 16:1480–1484

    Article  CAS  Google Scholar 

  85. Childs WR, Nuzzo RG (2005) Large area patterning of coinage-metal thin films using decal transfer lithography. Langmuir 21:195–202

    Article  CAS  Google Scholar 

  86. Haynes CL, Van Duyne RP (2001) Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics. J Phys Chem B 105:5599–5611

    Article  CAS  Google Scholar 

  87. Krenn JR, Aussenegg (2002) Nanoptik mit metallischen Stukturen. Phys-J 1:39–45

    CAS  Google Scholar 

  88. Geddes CD, Parfenov A, Lakowicz JR (2003) Photodeposition of silver can result in metal-enhanced fluorescence. Appl Spectrosc 57(5):526–531

    Article  CAS  Google Scholar 

  89. Geddes CD, Parfenov A, Roll D, Fang J, Lakowicz JR (2003) Electrochemical and laser deposition of silver for usein metal-enhanced fluorescence. Langmuir 19(15):6236–6241

    Article  CAS  Google Scholar 

  90. Gutta P, Hoffmann R (2003) Propensity of different AgBr surfaces for photo-induced silver cluster formation: a molecular orbital analysis. J Phys Chem A 107:8184–8190

    Article  CAS  Google Scholar 

  91. Yamamoto T, Machi K, Nagare S, Hmamda K, Senna M (2004) The relation between surface plasmon resonance and morphology of Ag nanorods prepared by pulse laser deposition. Solid State Ion 172:299–302

    Article  CAS  Google Scholar 

  92. Bsldacchini T, Pons AC, Lafratta CN, Fourkas JT (2005) Multiphoton laser direct writing of two-dimensional silver structures. Opt Express 13:1275–1280

    Article  Google Scholar 

  93. Liang HP, Wan LJ, Bai CL, Jiang L (2005) Gold hollow nanospheres: tunable surface plasmon resonance controlled by interior cavity sizes. J Chem Phys B 109:7795–7800

    Article  CAS  Google Scholar 

  94. Chen MMY, Katz A (2002) Synthesis and characterization of gold–silica nanoparticles incorporating a mercaptosilane core–shell interface. Langmuir 18:8566–8572

    Article  CAS  Google Scholar 

  95. Oldenburgh SJ, Westscott SL, Averitt RD, Halas NJ (1999) Surface enhanced Raman scattering in the near infrared usingmetal nanoshell substrates. J Chem Phys 111(10):4729–4735

    Article  Google Scholar 

  96. Chen K, Lui Y, Ameer G, Backman V (2005) Optimal design if structured nanospheres for ultrashape light- scattering resonances as molecular imaging mutilabels. JBiomed Opt 10(2):024005–024110

    Article  CAS  Google Scholar 

  97. Song JH, Atay T, Shi S, Urabe H, Nurmiko AV (2005) Large enhancement of fluorescence efficiency from CdSe/Zns quantum dots induced by resonant coupling to spatially controlled surface plasmons. Nano Lett 5(8):1557–1561

    Article  CAS  Google Scholar 

  98. Grycynski I, Mailicka J, Lukomska J, Grycynski Z, Lakowicz JR (2004) Surface plasmon-coupled polarized emission of N-acetyl-l-tryptophanamide. Photochem, Photobiol 80:482–485

    Google Scholar 

  99. Malicka J, Gryczynski I, Gryczynski Z, Lakowicz JR (2004) Surface plasmon-coupled emission of 2,5-diphenyl-1,3,4-oxadiazole. J Phys Chem B 108:19114–19118

    Article  CAS  Google Scholar 

  100. Gryczynski I, Malicka J, Gryczynski Z, Lakowicz JR (2004) Surface plasmon-coupled emission with gold films. J Phys Chem B 108:12568–12574

    Article  CAS  Google Scholar 

  101. Grycynski I, Malicka J, Grycynski Z, Nowaczyk K, Lakowicz JR (2004) Ultraviolet surface-plasmon-coupled emission using thin aluminum films. Anal Chem 76:4076–4081

    Article  CAS  Google Scholar 

  102. Geddes CD, Grycynski I, Malicka J, Grycynski Z, Lakowicz JR (2004) Directional surface plasmon coupled emission. J Fluoresc 14(1):119–123

    Article  CAS  Google Scholar 

  103. Gryczynski I, Malicka J, Jiang W, Fischer H, Chan W, Grycynski Z, Grudzinski W, Lakowicz JR (2005) Surface-plasmon-coupled emission of quantum dots. J Phys Chem B 109:1088–1093

    Article  CAS  Google Scholar 

  104. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830

    Article  CAS  Google Scholar 

  105. Gramotnev DK, Pile DFP (2004) Single-mode subwavelength waveguide with channel plasmon–polaritons in triangular grooves on a metal surface. Appl Phys Lett 85:6323–6325

    Article  CAS  Google Scholar 

  106. Maier SA, Kik PG, Atwater HA, Meltzer S, Harrel E, Koel BE, Requicha AG (2003) Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nat Mater 2:228–232

    Article  CAS  Google Scholar 

  107. Brongersma ML, Hartman JW, Atwater HA (2000) Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit. Phys Rev B 62:356–359

    Article  Google Scholar 

  108. Lamprecht B, Krenn JR, Schider G, Ditlbacher H, Felidj N, Leitner A, Aussenberg FR (2001) Surface plasmon propagation in microscale metal stripes. Appl Phys Lett 79:51–53

    Article  CAS  Google Scholar 

  109. Ditlbacher H, Krenn JR, Felidj N, Lamprecht B, Schider G, Salerno M, Leitner A, Aussenberg FR (2002) Fluorescence imaging of surface plasmon fields. Appl Phys Lett 80:404–406

    Article  CAS  Google Scholar 

  110. Devaux E, Ebbesen TW, Weeber JC, Dereux A (2003) Launching and decoupling surface plasmons via micro-gratings. Appl Phys Lett 83:4936–4938

    Article  CAS  Google Scholar 

  111. Krenn JR, Ditlbacher H, Schider G, Hohenau A, Leitner A, Aussenberg FR (2003) Surface plasmon micro-and nano optics. J Microsc 209:167–172

    CAS  Google Scholar 

  112. Hohenau A, Krenn JR, Stepanov AL, Drezert A, Ditlbacher H, Steinberger B, Leitner A, Aussenberg FR (2005) Dielectric optical elements for surface plasmons. Opt Lett 30:893–895

    Article  CAS  Google Scholar 

  113. Yin L, Vlasko-Vlasov VK, Pearson J, Hiller JM, Hua J, Welp U, Brown DE, Kimball CW (2005) Subwavelength focusing and guiding of surface plasmons. Nano Lett 5(7):1399–1402

    Article  CAS  Google Scholar 

  114. Xu C, Webb WW (1997) Multiphoton excitation of molecular fluorophores and nonlinear laser microscopy. In: JR Lakowicz (ed) Topics in Fluorescence Spectroscopy: Volume 5: Nonlinear and Two-Photon-Induced Fluorescence. Plenum Press, New York, pp 471–540

    Google Scholar 

  115. Calander N, Willander M (2002) Theory of surface-plasmon resonance optical field enhancement at prolate spheroids. J Appl Phys 92:4878–4884

    Article  CAS  Google Scholar 

  116. Hao E, Schatz GC (2004) Electromagnetic fields around silver nanoparticles and dimers. J Chem Phys 120:357–366

    Article  CAS  Google Scholar 

  117. Wenseleers W, Stellacio F, Meyer-Frederickson T, Mangel T, Bauer C, Pond SJK, Marder SR, Perry JW (2002) Five orders-of-magnitude enhancement of two-photon absorption for dyes on silver nanoparticle fractal clusters. J Phys Cherm B 106:6853–6863

    Article  CAS  Google Scholar 

  118. Muhlschlegel P, Eisler HJ, Martin OJF, Hecht B, Pohl DW (2005) Resonant optical antennas. Science 308:1607–1609

    Article  CAS  Google Scholar 

  119. Yelin D, Oron D, Thiberge S, Moses E, and Silberberg Y (2003) Multiphoton plasmon-resonance microscopy. Opt Express 11:1385–1391

    Article  Google Scholar 

  120. Garini Y, Vermolen BJ, Young IT (2005) From micro to nano: recent advances in high resolution microscopy. Curr Opin Biotechnol 16:3–12

    Article  CAS  Google Scholar 

  121. Ebbesen TW, Lezec HJ, Ghaemi HF, Thio T, Wolff PA (1998) Extraordinary optical transmission through sub-wavelength hole arrays. Nature 39:667–669

    Article  Google Scholar 

  122. Pendry JP (2000) Negative refraction makes a perfect lens. Phys Rev Lett 85:3966–3969

    Article  CAS  Google Scholar 

  123. Thomas DA, Hughes HP (2004) Enhanced optical transmission through a subwavelength 1D aperture. Solid State Commun 129:519–524

    Article  CAS  Google Scholar 

  124. Martin-Moreno L, Garcia-Vidal FJ, Lezec HJ, Degiron A, Ebbesen TW (2003) Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations. Phys Rev Lett 90:167401–167404

    Article  CAS  Google Scholar 

  125. Luo X, Shi J, Wang H, Yu G (2004) Surface plasmon polariton radiation from metallic photogenic crystal slabs breaking the diffraction limit: nano-storage and nanofabrication. Mod Phys Lett B 18:945–953

    Article  CAS  Google Scholar 

  126. Sun Z, Kim H K (2004) Refractive transmission of light and beam shaping with metallic nano-optic lenses. Appl Phys Lett 85:642–644

    Article  CAS  Google Scholar 

  127. Lezec HJ, Degiron A, Devaux E, Linke RA, Martin-Moreno L, Garcia-Vidal FJ, Ebbesen TW (2002) Beaming light from a subwavelength aperture. Science 297:820–822

    Article  CAS  Google Scholar 

  128. Hohng SC, Yoon YC, Kim DS, Malyachuk V, Muller R, Lienau Ch, Park JW, Yoo KH, Kim J, Ryu HY, Park QH (2002) Light emission from the shadows: surface plasmon nano-optics at near light and far fields. Appl Phys Lett 81:3239–3241

    Article  CAS  Google Scholar 

  129. Luo X, Ishihara T (2004) Surface plasmon resonant interference nanolithography technique. Appl Phys Lett 84:4780–4782

    Article  CAS  Google Scholar 

  130. Dragnea B, Szarko JM, Kowarik S, Weimann T, Feldmann J, Leone SR (2003) Near-field surface plasmon excitation on structured gold films. Nano Lett 3(1):3–7

    Article  CAS  Google Scholar 

  131. Srituravanich W, Fang N, Sun C, Luo Q, Zhang X (2004) Plasmonic nanolithography. Nano Lett 4(6):1085–1088

    Article  CAS  Google Scholar 

  132. Liu Z-W, Wei Q-H, Zhang X (2005) Surface plasmon interference nanolithography. Nano Lett 5(5):957–961

    Article  CAS  Google Scholar 

  133. Smolyaninov II, Elliott J, Zayats AV, Davis CC (2005) Far-field optical microscopy with a nanometer-scale resolution based on the in-plane image magnification by surface plasmon polaritons. Phys Rev Lett 94:057401–057401-4

    Article  CAS  Google Scholar 

  134. Garini Y, Kutchoukov VG, Bossche A, Alkemade PFA, Docter M, Verbeek PW, van Vliet LJ, Young IT (2004) Toward the development of a three-dimensional mid-field microscope. Proc SPIE 5327:115–122

    Article  CAS  Google Scholar 

  135. Docter MW, Young IT, Kutchoukov VG, Bossche A, Alkemade PFA, Garini Y (2005) A novel concept for a mid-field microscope. Proc SPIE 5703:118–126

    Article  Google Scholar 

  136. Levene MJ, Korlach J, Turner SW, Foquet M, Craighead HG, Webb WW (2003) Zero-mode waveguides for single-molecule analysis at high concentrations. Science 299:682–686

    Article  CAS  Google Scholar 

  137. Edel JB, Wu M, Baird B, Craighead HG (2002) High spatial resolution observation of single-molecule dynamics in living cell membranes. Biophys J L43–Ll45

Download references

Acknowledgment

This study was supported by the NIH National Center for Research Resources (RR08119). NHGRI HG-002655 and NIBIB EB000682.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph R. Lakowicz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lakowicz, J.R. Plasmonics in Biology and Plasmon-Controlled Fluorescence. Plasmonics 1, 5–33 (2006). https://doi.org/10.1007/s11468-005-9002-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-005-9002-3

Keywords

Navigation