Skip to main content
Log in

A Study of the Surface Plasmon Resonance of Silver Nanoparticles by the Discrete Dipole Approximation Method: Effect of Shape, Size, Structure, and Assembly

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The surface plasmon resonance (SPR) of silver nanoparticles (AgNPs) was studied with the discrete dipole approximation considering different shapes, sizes, dielectric environments, and supraparticles assemblies. In particular, we focused our simulations on AgNPs with sizes below 10 nm, where the correction of silver dielectric constant for intrinsic size effects is necessary. We found that AgNPs shape and assembly can induce distinctive features in the extinction spectra and that SPR is more intense when AgNPs have discoid or flat shapes and are embedded in a dielectric shell with high refractive index. However, the SPR loses much of its distinctive features when size effects and stabilizing molecules induce significant broadening of the extinction bands that is often observed in the case of thiolated AgNPs smaller than about 5 nm. These results are useful indications for in situ characterization and monitoring of AgNPs synthesis and for the engineering of AgNPs with new plasmonic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Xia Y, Halas NJ (2005) MRS Bull 30:338–348

    CAS  Google Scholar 

  2. Alivisatos P (2004) Nat Biotechnol 22:47–52

    Article  CAS  Google Scholar 

  3. Jain PK, Huang X, El-Sayed IH, El-Sayed MA (2007) Plasmonics 2:107–118

    Article  CAS  Google Scholar 

  4. Yong K, Swihart MT, Ding H, Prasad PN (2009) Plasmonics 4:79–93

    Article  CAS  Google Scholar 

  5. Ren J, Tilley RD (2007) J Am Chem Soc 129:3287–3291

    Article  CAS  Google Scholar 

  6. Wiley BJ, Im SH, Li ZY, McLellan J, Siekkinen A, Xia Y (2006) J Phys Chem B 110:15666–15675

    Article  CAS  Google Scholar 

  7. Zhang Q, Tan YN, Xie J, Lee JY (2009) Plasmonics 4:9–22

    Article  CAS  Google Scholar 

  8. Noguez C (2005) Opt Mater 27:1204–1211

    Article  Google Scholar 

  9. Noguez C (2007) J Phys Chem C 111:3806–3819

    Article  CAS  Google Scholar 

  10. Gonzalez AL, Noguez C, Ortiz GP, Rodriguez-Gattorno G (2005) J Phys Chem B 109:17512–17517

    Article  CAS  Google Scholar 

  11. Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, Berlin

    Google Scholar 

  12. Amendola V, Meneghetti M (2009) J Phys Chem C 113:4277–4285

    Article  CAS  Google Scholar 

  13. Amendola V, Polizzi S, Meneghetti M (2006) J Phys Chem B 110:7232–7237

    Article  CAS  Google Scholar 

  14. Amendola V, Polizzi S, Meneghetti M (2007) Langmuir 23:6766–6770

    Article  CAS  Google Scholar 

  15. Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) J Phys Chem B 107:668–677

    Article  CAS  Google Scholar 

  16. Draine BT, Flatau PJ (1994) J Opt Soc Am A 11:1491–1499

    Article  Google Scholar 

  17. Gonzalez AL, Noguez C (2006) (in press) Arxiv: physics/0609015

  18. Gonzalez AL, Reyes-Esqueda JA, Noguez C (2008) J Phys Chem C 112:7356–7362

    Article  CAS  Google Scholar 

  19. Gracia-Pinilla MA, Perez-Tijerina E, Garcia JA, Fernandez-Navarro C, Tlahuice-Flores A, Mejia-Rosales S, Montejano-Carrizales JM, Jose-Yacaman M (2008) J Phys Chem C 112:13492–13498

    Article  CAS  Google Scholar 

  20. Portales H, Pinna N, Pileni MP (2009) J Phys Chem A 113:4094–4099

    Article  CAS  Google Scholar 

  21. Roman-Velazquez CE, Noguez C, Zhang JZ (2009) J Phys Chem A 113:4068–4074

    Article  CAS  Google Scholar 

  22. Sosa I, Noguez C, Barrera RG (2003) J Phys Chem B 107:6269–6275

    Article  CAS  Google Scholar 

  23. Zhang JZ, Noguez C (2008) Plasmonics 3:127–150

    Article  CAS  Google Scholar 

  24. Chen F, Johnston RL (2009) Plasmonics 4:147–152

    Article  CAS  Google Scholar 

  25. Johnson PB, Christy RW (1972) Phys Rev B 6:4370–4379

    Article  CAS  Google Scholar 

  26. Hovel H, Fritz S, Hilger A, Kreibig U, Vollmer M (1993) Phys Rev B 48:18178–18188

    Article  Google Scholar 

  27. Brust M, Kiely CJ (2002) Colloids Surf Physicochem Eng Aspects 202:175–186

    Article  CAS  Google Scholar 

  28. Kohlmann O, Steinmetz WE, Mao XA, Wuelfing WP, Templeton AC, Murray RW, Johnson CSJr (2001) J Phys Chem B 105:8801–8809

    Article  CAS  Google Scholar 

  29. Malinsky MD, Kelly KL, Schatz GC, Van Duyne RP (2001) J Am Chem Soc 123:1471–1482

    Article  CAS  Google Scholar 

  30. Templeton AC, Wuelfing WP, Murray RW (2000) Acc Chem Res 33:27–36

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors acknowledge Prof. M. Meneghetti for hints and useful discussions. V.A. acknowledges Aldo Gini Foundation for financial support during his exchange period at MIT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo Amendola.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amendola, V., Bakr, O.M. & Stellacci, F. A Study of the Surface Plasmon Resonance of Silver Nanoparticles by the Discrete Dipole Approximation Method: Effect of Shape, Size, Structure, and Assembly. Plasmonics 5, 85–97 (2010). https://doi.org/10.1007/s11468-009-9120-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-009-9120-4

Keywords

Navigation