Skip to main content

Advertisement

Log in

Variation of Macrophage Tropism among HIV-1 R5 Envelopes in Brain and Other Tissues

  • Invited Review
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

Human immunodeficiency virus (HIV)-positive individuals frequently suffer from progressive encephelopathy, which is characterized by sensory neuropathy, sensory myelopathy, and dementia. Our group and others have reported the presence of highly macrophage-tropic R5 variants of HIV-1 in brain tissue of patients with neurological complications. These variants are able to exploit low amounts of CD4 and/or CCR5 for infection and potentially confer an expanded tropism for any cell types that express low CD4 and/or CCR5. In contrast to the brain-derived envelopes, we found that envelopes from lymph node tissue, blood, or semen were predominantly non-macrophage-tropic and required high amounts of CD4 for infection. Nevertheless, where tested, the non-macrophage-tropic envelopes conferred efficient replication in primary CD4+ T-cell cultures. Determinants of R5 macrophage tropism appear to involve changes in the CD4 binding site, although further unknown determinants are also involved. The variation of R5 envelopes also affects their sensitivity to inhibition by ligands and entry inhibitors that target CD4 and CCR5. In summary, HIV-1 R5 viruses vary extensively in macrophage tropism. In the brain, highly macrophage-tropic variants may represent neurotropic or neurovirulent viruses. In addition, variation in R5 macrophage tropism may also have implications (1) for transmission, depending on what role macrophages or cells that express low CD4 and/or CCR5 play in the establishment of infection in a new host, and (2) for pathogenesis and depletion of CD4+ T cells (i.e., do highly macrophage-tropic variants confer a broader tropism among CD4+ T-cell populations late in disease and contribute to their depletion?).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Albright AV, Martin J, O’Connor M, Gonzalez-Scarano F (2001) Interactions between HIV-1 gp120, chemokines, and cultured adult microglial cells. J Neurovirology 7:196–207

    Article  CAS  Google Scholar 

  • Albright AV, Shieh JT, Itoh T, Lee B, Pleasure D, O’Connor MJ, Doms RW, Gonzalez-Scarano F (1999) Microglia express CCR5, CXCR4, and CCR3, but of these, CCR5 is the principal coreceptor for human immunodeficiency virus type 1 dementia isolates. J Virol 73:205–213

    PubMed  CAS  Google Scholar 

  • An SF, Groves M, Giometto B, Beckett AA, Scaravilli F (1999) Detection and localisation of HIV-1 DNA and RNA in fixed adult AIDS brain by polymerase chain reaction in situ hybridisation technique. Acta Neuropathol (Berl) 98:481–487

    Article  CAS  Google Scholar 

  • Ancuta P, Kunstman KJ, Autissier P, Zaman T, Stone D, Wolinsky SM, Gabuzda D (2006) CD16+ monocytes exposed to HIV promote highly efficient viral replication upon differentiation into macrophages and interaction with T cells. Virology 344:267–276

    Article  PubMed  CAS  Google Scholar 

  • Asjo B, Morfeldt Manson L, Albert J, Biberfeld G, Karlsson A, Lidman K, Fenyo EM (1986) Replicative capacity of human immunodeficiency virus from patients with varying severity of HIV infection. Lancet 2:660–662

    PubMed  CAS  Google Scholar 

  • Baba M, Nishimura O, Kanzaki N, Okamoto M, Sawada H, Iizawa Y, Shiraishi M, Aramaki Y, Okonogi K, Ogawa Y, Meguro K, Fujino M (1999) A small-molecule, nonpeptide CCR5 antagonist with highly potent and selective anti-HIV-1 activity. Proc Natl Acad Sci USA 96:5698–5703

    Article  PubMed  CAS  Google Scholar 

  • Bannert N, Schenten D, Craig S, Sodroski J (2000) The level of CD4 expression limits infection of primary rhesus monkey macrophages by a T-tropic simian immunodeficiency virus and macrophagetropic human immunodeficiency viruses. J Virol 74:10984–10993

    Article  PubMed  CAS  Google Scholar 

  • Bell JE (1998) The neuropathology of adult HIV infection. Rev Neurol (Paris) 154:816–829

    CAS  Google Scholar 

  • Bell JE, Busuttil A, Ironside JW, Rebus S, Donaldson YK, Simmonds P, Peutherer JF (1993) Human immunodeficiency virus and the brain: investigation of virus load and neuropathologic changes in pre-AIDS subjects. J Infect Dis 168:818–824

    PubMed  CAS  Google Scholar 

  • Blaak H, van’t Wout AB, Brouwer M, Hooibrink B, Hovenkamp E, Schuitemaker H (2000) In vivo HIV-1 infection of CD45RA(+)CD4(+) T cells is established primarily by syncytium-inducing variants and correlates with the rate of CD4(+) T cell decline. Proc Natl Acad Sci USA 97:1269–1274

    Article  PubMed  CAS  Google Scholar 

  • Bleul CC, Wu L, Hoxie JA, Springer TA, Mackay CR (1997) The HIV coreceptors CXCR4 and CCR5 are differentially expressed and regulated on human T lymphocytes. Proc Natl Acad Sci USA 94:1925–1930

    Article  PubMed  CAS  Google Scholar 

  • Cecilia D, Kulkarni SS, Tripathy SP, Gangakhedkar RR, Paranjape RS, Gadkari DA (2000) Absence of coreceptor switch with disease progression in human immunodeficiency virus infections in India. Virology 271:253–258

    Article  PubMed  CAS  Google Scholar 

  • Cheng-Mayer C, Weiss C, Seto D, Levy JA (1989) Isolates of human immunodeficiency virus type 1 from the brain may constitute a special group of the AIDS virus. Proc Natl Acad Sci USA 86:8575–8579

    Article  PubMed  CAS  Google Scholar 

  • Connor RI, Ho DD (1994) Human immunodeficiency virus type 1 variants with increased replicative capacity develop during the asymptomatic stage before disease progression. J Virol 68:4400–4408

    PubMed  CAS  Google Scholar 

  • Cosenza MA, Zhao ML, Si Q, Lee SC (2002) Human brain parenchymal microglia express CD14 and CD45 and are productively infected by HIV-1 in HIV-1 encephalitis. Brain Pathol 12:442–455

    Article  PubMed  CAS  Google Scholar 

  • Cunningham AL (1998) CCR5 expression correlates with susceptibility of maturing monocytes to human immunodeficiency virus type 1 infection. J Virol 72:830–836

    PubMed  Google Scholar 

  • Davis LE, Hjelle BL, Miller VE, Palmer DL, Llewellyn AL, Merlin TL, Young SA, Mills RG, Wachsman W, Wiley CA (1992) Early viral brain invasion in iatrogenic human immunodeficiency virus infection. Neurology 42:1736–1739

    PubMed  CAS  Google Scholar 

  • de Roda Husman AM, van Rij RP, Blaak H, Broersen S, Schuitemaker H (1999) Adaptation to promiscuous usage of chemokine receptors is not a prerequisite for human immunodeficiency virus type 1 disease progression. J Infect Dis 180:1106–1115

    Article  PubMed  Google Scholar 

  • Dejucq N, Simmons G, Clapham PR (1999) Expanded tropism of primary human immunodeficiency virus type 1 R5 strains to CD4(+) T-cell lines determined by the capacity to exploit low concentrations of CCR5. J Virol 73:7842–7847

    PubMed  CAS  Google Scholar 

  • Derdeyn CA, Decker JM, Bibollet-Ruche F, Mokili JL, Muldoon M, Denham SA, Heil ML, Kasolo F, Musonda R, Hahn BH, Shaw GM, Korber BT, Allen S, Hunter E (2004) Envelope-constrained neutralization-sensitive HIV-1 after heterosexual transmission. Science 303:2019–2022

    Article  PubMed  CAS  Google Scholar 

  • Di Marzio P, Tse J, Landau NR (1998) Chemokine receptor regulation and HIV type 1 tropism in monocyte–macrophages. AIDS Res Hum Retrovir 14:129–138

    Article  PubMed  Google Scholar 

  • Donaldson YK, Bell JE, Ironside JW, Brettle RP, Robertson JR, Busuttil A, Simmonds P (1994) Redistribution of HIV outside the lymphoid system with onset of AIDS. Lancet 343:383–385

    Article  PubMed  CAS  Google Scholar 

  • Dunfee R, Thomas ER, Gorry PR, Wang J, Taylor J, Kunstman K, Wolinsky SM, Gabuzda D (2006a) The HIV Env variant N283 enhances macrophage tropism and is associated with brain infection and dementia. Proc Natl Acad Sci USA (in press)

  • Dunfee R, Thomas E, Gorry PR, Wang J, Ancuta P, Gabuzda D (2006b) Mechanisms of HIV-1 neurotropism. Curr HIV Res 4:267–278

    Article  PubMed  CAS  Google Scholar 

  • Fischer-Smith T, Croul S, Adeniyi A, Rybicka K, Morgello S, Khalili K, Rappaport J (2004) Macrophage/microglial accumulation and proliferating cell nuclear antigen expression in the central nervous system in human immunodeficiency virus encephalopathy. Am J Pathol 164:2089–2099

    PubMed  CAS  Google Scholar 

  • Fischer-Smith T, Croul S, Sverstiuk AE, Capini C, L’Heureux D, Regulier EG, Richardson MW, Amini S, Morgello S, Khalili K, Rappaport J (2001) CNS invasion by CD14+/CD16+ peripheral blood-derived monocytes in HIV dementia: perivascular accumulation and reservoir of HIV infection. J Neurovirology 7:528–541

    Article  CAS  Google Scholar 

  • Flaherty MT, Hauer DA, Mankowski JL, Zink MC, Clements JE (1997) Molecular and biological characterization of a neurovirulent molecular clone of simian immunodeficiency virus. J Virol 71:5790–5798

    PubMed  CAS  Google Scholar 

  • Flynn G, Maru S, Loughlin J, Romero IA, Male D (2003) Regulation of chemokine receptor expression in human microglia and astrocytes. J Neuroimmunol 136:84–93

    Article  PubMed  CAS  Google Scholar 

  • Gartner S (2000) HIV infection and dementia. Science 287:602–604

    Article  PubMed  CAS  Google Scholar 

  • Glass JD, Fedor H, Wesselingh SL, McArthur JC (1995) Immunocytochemical quantitation of human immunodeficiency virus in the brain: correlations with dementia. Ann Neurol 38:755–762

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez E, Rovin BH, Sen L, Cooke G, Dhanda R, Mummidi S, Kulkarni H, Bamshad MJ, Telles V, Anderson SA, Walter EA, Stephan KT, Deucher M, Mangano A, Bologna R, Ahuja SS, Dolan MJ, Ahuja SK (2002) HIV-1 infection and AIDS dementia are influenced by a mutant MCP-1 allele linked to increased monocyte infiltration of tissues and MCP-1 levels. Proc Natl Acad Sci USA 99:13795–13800

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Scarano F, Martin-Garcia J (2005) The neuropathogenesis of AIDS. Nat Rev Immunol 5:69–81

    Article  PubMed  CAS  Google Scholar 

  • Gorry PR, Bristol G, Zack JA, Ritola K, Swanstrom R, Birch CJ, Bell JE, Bannert N, Crawford K, Wang H, Schols D, De Clercq E, Kunstman K, Wolinsky SM, Gabuzda D (2001) Macrophage tropism of human immunodeficiency virus type 1 isolates from brain and lymphoid tissues predicts neurotropism independent of coreceptor specificity. J Virol 75:10073–10089

    Article  PubMed  CAS  Google Scholar 

  • Gorry PR, Taylor J, Holm GH, Mehle A, Morgan T, Cayabyab M, Farzan M, Wang H, Bell JE, Kunstman K, Moore JP, Wolinsky SM, Gabuzda D (2002) Increased CCR5 affinity and reduced CCR5/CD4 dependence of a neurovirulent primary human immunodeficiency virus type 1 isolate. J Virol 76:6277–6292

    Article  PubMed  CAS  Google Scholar 

  • Gosztonyi G, Artigas J, Lamperth L, Webster HD (1994) Human immunodeficiency virus (HIV) distribution in HIV encephalitis: study of 19 cases with combined use of in situ hybridization and immunocytochemistry. J Neuropathol Exp Neurol 53:521–534

    PubMed  CAS  Google Scholar 

  • Gray L, Sterjovski J, Churchill M, Ellery P, Nasr N, Lewin SR, Crowe SM, Wesselingh SL, Cunningham AL, Gorry PR (2005) Uncoupling coreceptor usage of human immunodeficiency virus type 1 (HIV-1) from macrophage tropism reveals biological properties of CCR5-restricted HIV-1 isolates from patients with acquired immunodeficiency syndrome. Virology 337:384–398

    Article  PubMed  CAS  Google Scholar 

  • Hickey WF (1999) Leukocyte traffic in the central nervous system: the participants and their roles. Semin Immunol 11:125–137

    Article  PubMed  CAS  Google Scholar 

  • Kaul M, Garden GA, Lipton SA (2001) Pathways to neuronal injury and apoptosis in HIV-associated dementia. Nature 410:988–994

    Article  PubMed  CAS  Google Scholar 

  • Kaul M, Zheng J, Okamoto S, Gendelman HE, Lipton SA (2005) HIV-1 infection and AIDS: consequences for the central nervous system. Cell Death Differ 12(Suppl 1):878–892

    Article  PubMed  CAS  Google Scholar 

  • Koot M, Keet IP, Vos AH, de Goede RE, Roos MT, Coutinho RA, Miedema F, Schellekens PT, Tersmette M (1993) Prognostic value of HIV-1 syncytium-inducing phenotype for rate of CD4+ cell depletion and progression to AIDS. Ann Intern Med 118:681–688

    PubMed  CAS  Google Scholar 

  • Lane JH, Sasseville VG, Smith MO, Vogel P, Pauley DR, Heyes MP, Lackner AA (1996) Neuroinvasion by simian immunodeficiency virus coincides with increased numbers of perivascular macrophages/microglia and intrathecal immune activation. J Neurovirology 2:423–432

    CAS  Google Scholar 

  • Lathey JL, Brambilla D, Goodenow MM, Nokta M, Rasheed S, Siwak EB, Bremer JW, Huang DD, Yi Y, Reichelderfer PS, Collman RG (2000) Co-receptor usage was more predictive than NSI/SI phenotype for HIV replication in macrophages: is NSI/SI phenotyping sufficient? J Leukoc Biol 68:324–330

    PubMed  CAS  Google Scholar 

  • Lee B, Sharron M, Montaner LJ, Weissman D, Doms RW (1999) Quantification of CD4, CCR5, and CXCR4 levels on lymphocyte subsets, dendritic cells, and differentially conditioned monocyte-derived macrophages. Proc Natl Acad Sci USA 96:5215–5220

    Article  PubMed  CAS  Google Scholar 

  • Li S, Juarez J, Alali M, Dwyer D, Collman R, Cunningham A, Naif HM (1999) Persistent CCR5 utilization and enhanced macrophage tropism by primary blood human immunodeficiency virus type 1 isolates from advanced stages of disease and comparison to tissue-derived isolates. J Virol 73:9741–9755

    PubMed  CAS  Google Scholar 

  • Liu Y, Tang XP, McArthur JC, Scott J, Gartner S (2000) Analysis of human immunodeficiency virus type 1 gp160 sequences from a patient with HIV dementia: evidence for monocyte trafficking into brain. J Neurovirology 6(Suppl 1):S70–S81

    CAS  Google Scholar 

  • Mankowski JL, Flaherty MT, Spelman JP, Hauer DA, Didier PJ, Amedee AM, Murphey-Corb M, Kirstein LM, Munoz A, Clements JE, Zink MC (1997) Pathogenesis of simian immunodeficiency virus encephalitis: viral determinants of neurovirulence. J Virol 71:6055–6060

    PubMed  CAS  Google Scholar 

  • Mankowski JL, Spelman JP, Ressetar HG, Strandberg JD, Laterra J, Carter DL, Clements JE, Zink MC (1994) Neurovirulent simian immunodeficiency virus replicates productively in endothelial cells of the central nervous system in vivo and in vitro. J Virol 68:8202–8208

    PubMed  CAS  Google Scholar 

  • Martin-Garcia J, Cao W, Varela-Rohena A, Plassmeyer ML, Gonzalez-Scarano F (2006) HIV-1 tropism for the central nervous system: brain-derived envelope glycoproteins with lower CD4 dependence and reduced sensitivity to a fusion inhibitor. Virology 346:169–179

    Article  PubMed  CAS  Google Scholar 

  • McKnight A, Wilkinson D, Simmons G, Talbot S, Picard L, Ahuja M, Marsh M, Hoxie JA, Clapham PR (1997) Inhibition of human immunodeficiency virus fusion by a monoclonal antibody to a coreceptor (CXCR4) is both cell type and virus strain dependent. J Virol 71:1692–1696

    PubMed  CAS  Google Scholar 

  • Mori K, Rosenzweig M, Desrosiers RC (2000) Mechanisms for adaptation of simian immunodeficiency virus to replication in alveolar macrophages. J Virol 74:10852–10859

    Article  PubMed  CAS  Google Scholar 

  • Naif HM, Li S, Alali M, Sloane A, Wu L, Kelly M, Lynch G, Lloyd A, Cunningham AL (1998) CCR5 expression correlates with susceptibility of maturing monocytes to human immunodeficiency virus type 1 infection. J Virol 72:830–836

    Google Scholar 

  • Nottet HS, Gendelman HE (1995) Unraveling the neuroimmune mechanisms for the HIV-1-associated cognitive/motor complex. Immunol Today 16:441–448

    Article  PubMed  CAS  Google Scholar 

  • Ostrowski MA, Chun TW, Justement SJ, Motola I, Spinelli MA, Adelsberger J, Ehler LA, Mizell SB, Hallahan CW, Fauci AS (1999) Both memory and CD45RA+/CD62L+ Naive CD4(+) T cells are infected in human immunodeficiency virus type 1-infected individuals. J Virol 73:6430–6435

    PubMed  CAS  Google Scholar 

  • Pereira CF, Middel J, Jansen G, Verhoef J, Nottet HS (2001) Enhanced expression of fractalkine in HIV-1 associated dementia. J Neuroimmunol 115:168–175

    Article  PubMed  CAS  Google Scholar 

  • Peters PJ, Bhattacharya J, Hibbitts S, Dittmar MT, Simmons G, Bell J, Simmonds P, Clapham PR (2004) Biological analysis of human immunodeficiency virus type 1 R5 envelopes amplified from brain and LN tissues of AIDS patients with neuropathology reveals two distinct tropism phenotypes and identifies envelopes in the brain that confer an enhanced tropism and fusigenicity for macrophages. J Virol 78:6915–6926

    Article  PubMed  CAS  Google Scholar 

  • Peters PJ, Sullivan WM, Dueñas-Decamp MJ, Bhattacharya J, Ankghuambom C, Brown R, Luzuriaga K, Bell J, Simmonds P, Ball J, Clapham PR (2006) Non-macrophage-tropic human immunodeficiency virus type 1 R5 envelopes predominate in blood, lymph nodes, and semen: implications for transmission and pathogenesis. J Virol 80:6324–6332

    Article  PubMed  CAS  Google Scholar 

  • Pinter A, Honnen WJ, He Y, Gorny MK, Zolla-Pazner S, Kayman SC (2004) The V1/V2 domain of gp120 is a global regulator of the sensitivity of primary human immunodeficiency virus type 1 isolates to neutralization by antibodies commonly induced upon infection. J Virol 78:5205–5215

    Article  PubMed  CAS  Google Scholar 

  • Pulliam L, Gascon R, Stubblebine M, McGuire D, McGrath MS (1997) Unique monocyte subset in patients with AIDS dementia. Lancet 349:692–695

    Article  PubMed  CAS  Google Scholar 

  • Ranki A, Nyberg M, Ovod V, Haltia M, Elovaara I, Raininko R, Haapasalo H, Krohn K (1995) Abundant expression of HIV Nef and Rev proteins in brain astrocytes in vivo is associated with dementia. AIDS 9:1001–1008

    Article  PubMed  CAS  Google Scholar 

  • Saito Y, Sharer LR, Epstein LG, Michaels J, Mintz M, Louder M, Golding K, Cvetkovich TA, Blumberg BM (1994) Overexpression of nef as a marker for restricted HIV-1 infection of astrocytes in postmortem pediatric central nervous tissues. Neurology 44:474–481

    PubMed  CAS  Google Scholar 

  • Scarlatti G, Tresoldi E, Bjorndal A, Fredriksson R, Colognesi C, Deng HK, Malnati MS, Plebani A, Siccardi AG, Littman DR, Fenyo EM, Lusso P (1997) In vivo evolution of HIV-1 co-receptor usage and sensitivity to chemokine-mediated suppression. Nat Med 3:1259–1265

    Article  PubMed  CAS  Google Scholar 

  • Sharer LR, Saito Y, Epstein LG, Blumberg BM (1994) Detection of HIV-1 DNA in pediatric AIDS brain tissue by two-step ISPCR. Adv Neuroimmunol 4:283–285

    PubMed  CAS  Google Scholar 

  • Sharma DP, Zink MC, Anderson M, Adams R, Clements JE, Joag SV, Narayan O (1992) Derivation of neurotropic simian immunodeficiency virus from exclusively lymphocytetropic parental virus: pathogenesis of infection in macaques. J Virol 66:3550–3556

    PubMed  CAS  Google Scholar 

  • Simmons G, Reeves JD, McKnight A, Dejucq N, Hibbitts S, Power CA, Aarons E, Schols D, Clercq ED, Proudfoot AEI, Clapham PR (1998) CXCR4 as a functional coreceptor for human immunodeficiency virus type 1 infection of primary macrophages. J Virol 72:8453–8457

    PubMed  CAS  Google Scholar 

  • Simmons G, Wilkinson D, Reeves JD, Dittmar MT, Beddows S, Weber J, Carnegie G, Desselberger U, Gray PW, Weiss RA, Clapham PR (1996) Primary, syncytium-inducing human immunodeficiency virus type 1 isolates are dual-tropic and most can use either Lestr or CCR5 as coreceptors for virus entry. J Virol 70:8355–8360

    PubMed  CAS  Google Scholar 

  • Smit TK, Wang B, Ng T, Osborne R, Brew B, Saksena NK (2001) Varied tropism of HIV-1 isolates derived from different regions of adult brain cortex discriminate between patients with and without AIDS dementia complex (ADC): evidence for neurotropic HIV variants. Virology 279:509–526

    Article  PubMed  CAS  Google Scholar 

  • Strizki JM, Xu S, Wagner NE, Wojcik L, Liu J, Hou Y, Endres M, Palani A, Shapiro S, Clader JW, Greenlee WJ, Tagat JR, McCombie S, Cox K, Fawzi AB, Chou CC, Pugliese-Sivo C, Davies L, Moreno ME, Ho DD, Trkola A, Stoddart CA, Moore JP, Reyes GR, Baroudy BM (2001) SCH-C (SCH 351125), an orally bioavailable, small molecule antagonist of the chemokine receptor CCR5, is a potent inhibitor of HIV-1 infection in vitro and in vivo. Proc Natl Acad Sci USA 98:12718–12723

    Article  PubMed  CAS  Google Scholar 

  • Takahashi K, Wesselingh SL, Griffin DE, McArthur JC, Johnson RT, Glass JD (1996) Localization of HIV-1 in human brain using polymerase chain reaction in situ hybridization and immunocytochemistry. Ann Neurol 39:705–711

    Article  PubMed  CAS  Google Scholar 

  • Teo I, Veryard C, Barnes H, An SF, Jones M, Lantos PL, Luthert P, Shaunak S (1997) Circular forms of unintegrated human immunodeficiency virus type 1 DNA and high levels of viral protein expression: association with dementia and multinucleated giant cells in the brains of patients with AIDS. J Virol 71:2928–2933

    PubMed  CAS  Google Scholar 

  • Tersmette M, Lange JM, de Goede RE, de Wolf F, Eeftink-Schattenkerk JK, Schellekens PT, Coutinho RA, Huisman JG, Goudsmit J, Miedema F (1989) Association between biological properties of human immunodeficiency virus variants and risk for AIDS and AIDS mortality. Lancet 1:983–985

    Article  PubMed  CAS  Google Scholar 

  • Thompson KA, Churchill MJ, Gorry PR, Sterjovski J, Oelrichs RB, Wesselingh SL, McLean CA (2004) Astrocyte specific viral strains in HIV dementia. Ann Neurol 56:873–877

    Article  PubMed  CAS  Google Scholar 

  • Toborek M, Lee YW, Flora G, Pu H, Andras IE, Wylegala E, Hennig B, Nath A (2005) Mechanisms of the blood–brain barrier disruption in HIV-1 infection. Cell Mol Neurobiol 25:181–199

    Article  PubMed  Google Scholar 

  • Tong N, Perry SW, Zhang Q, James HJ, Guo H, Brooks A, Bal H, Kinnear SA, Fine S, Epstein LG, Dairaghi D, Schall TJ, Gendelman HE, Dewhurst S, Sharer LR, Gelbard HA (2000) Neuronal fractalkine expression in HIV-1 encephalitis: roles for macrophage recruitment and neuroprotection in the central nervous system. J Immunol 164:1333–1339

    PubMed  CAS  Google Scholar 

  • Tornatore C, Chandra R, Berger JR, Major EO (1994) HIV-1 infection of subcortical astrocytes in the pediatric central nervous system. Neurology 44:481–487

    PubMed  CAS  Google Scholar 

  • Tuttle DL, Anders CB, Aquino-De Jesus MJ, Poole PP, Lamers SL, Briggs DR, Pomeroy SM, Alexander L, Peden KW, Andiman WA, Sleasman JW, Goodenow MM (2002) Increased replication of non-syncytium-inducing HIV type 1 isolates in monocyte-derived macrophages is linked to advanced disease in infected children. AIDS Res Hum Retrovir 18:353–362

    Article  PubMed  Google Scholar 

  • Valentin A, Albert J, Fenyo EM, Asjo B (1994) Dual tropism for macrophages and lymphocytes is a common feature of primary human immunodeficiency virus type 1 and 2 isolates. J Virol 68:6684–6689

    PubMed  CAS  Google Scholar 

  • Wang J, Crawford K, Yuan M, Wang H, Gorry PR, Gabuzda D (2002) Regulation of CC chemokine receptor 5 and CD4 expression and human immunodeficiency virus type 1 replication in human macrophages and microglia by T helper type 2 cytokines. J Infect Dis 185:885–897

    Article  PubMed  CAS  Google Scholar 

  • Weber C, Belge KU, von Hundelshausen P, Draude G, Steppich B, Mack M, Frankenberger M, Weber KS, Ziegler-Heitbrock HW (2000) Differential chemokine receptor expression and function in human monocyte subpopulations. J Leukoc Biol 67:699–704

    PubMed  CAS  Google Scholar 

  • Williams KC, Corey S, Westmoreland SV, Pauley D, Knight H, deBakker C, Alvarez X, Lackner AA (2001) Perivascular macrophages are the primary cell type productively infected by simian immunodeficiency virus in the brains of macaques: implications for the neuropathogenesis of AIDS. J Exp Med 193:905–915

    Article  PubMed  CAS  Google Scholar 

  • Williams KC, Hickey WF (2002) Central nervous system damage, monocytes and macrophages, and neurological disorders in AIDS. Annu Rev Neurosci 25:537–562

    Article  PubMed  CAS  Google Scholar 

  • Yi Y, Chen W, Frank I, Cutilli J, Singh A, Starr-Spires L, Sulcove J, Kolson DL, Collman RG (2003) An unusual syncytia-inducing human immunodeficiency virus type 1 primary isolate from the central nervous system that is restricted to CXCR4, replicates efficiently in macrophages, and induces neuronal apoptosis. J Neurovirology 9:432–441

    CAS  Google Scholar 

  • Yi Y, Isaacs SN, Williams DA, Frank I, Schols D, De Clercq E, Kolson DL, Collman RG (1999) Role of CXCR4 in cell-cell fusion and infection of monocyte-derived macrophages by primary human immunodeficiency virus type 1 (HIV-1) strains: two distinct mechanisms of HIV-1 dual tropism. J Virol 73:7117–7125

    PubMed  CAS  Google Scholar 

  • Yi Y, Shaheen F, Collman RG (2005) Preferential use of CXCR4 by R5X4 human immunodeficiency virus type 1 isolates for infection of primary lymphocytes. J Virol 79:1480–1486

    Article  PubMed  CAS  Google Scholar 

  • Zaitseva M, Blauvelt A, Lee S, Lapham CK, Klaus-Kovtun V, Mostowski H, Manischewitz J, Golding H (1997) Expression and function of CCR5 and CXCR4 on human Langerhans cells and macrophages: implications for HIV primary infection. Nat Med 3:1369–1375

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul R. Clapham.

Additional information

Support: NIH grants R01 MH64408, R01 AI062514, and R01 HD049273. Pediatric HIV research was supported by the Elizabeth Glaser Pediatric AIDS Foundation.

Meeting Presentation: HIV Preclinical–Clinical Therapeutics Research Symposium, May 15–16, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peters, P.J., Dueñas-Decamp, M.J., Sullivan, W.M. et al. Variation of Macrophage Tropism among HIV-1 R5 Envelopes in Brain and Other Tissues. Jrnl Neuroimmune Pharm 2, 32–41 (2007). https://doi.org/10.1007/s11481-006-9042-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-006-9042-2

Key words

Navigation