Skip to main content

Advertisement

Log in

Central Mechanisms of Pain Revealed Through Functional and Structural MRI

  • INVITED REVIEW
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

MR-based brain imaging technologies provide a suite of functional and structural metrics that can be used to test hypotheses about the CNS mechanisms underlying pain perception and chronification, from a cellular level to a systems level. Two types of functional MRI discussed in this review provide insight into pain mechanisms: stimulus-evoked fMRI and task-free (“resting state”) fMRI. The former can assess how the brain responds to noxious or non-noxious stimuli normally or in a chronic pain state as a window into understanding pain, hyperalgesia and allodynia. The latter can assess functional connectivity reflecting synchronous ultra-slow frequency oscillation between brain areas. This provides insight into how brain areas work together as networks to produce pain and how these networks may be modified due to chronic pain. Perfusion MR (e.g., arterial spin labeling) can also provide task-free information pertaining to ongoing brain activity that may reflect spontaneous (ongoing) chronic pain. Structural MR techniques can be used to delineate gray and white matter abnormalities and markers of neuroinflammation associated with chronic pains. Functional and structural MRI findings point to brain and peripheral nerve abnormalities in patients with chronic pain, some of which are pre-existing and others that develop with prolonged pain (and related neuroinflammation) over time. Recent studies indicate that some structural brain abnormalities associated with chronic pain are reversible following effective pain treatment. These data together with findings from studies of individual differences suggest that some chronic pains arise from a combination of pre-existing vulnerabilities and sustained abnormal input.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Albe-Fessard D, Berkley KJ, Kruger L, Ralston HJ III, Willis WD Jr (1985) Diencephalic mechanisms of pain sensation. Brain Res Rev 9:217–296

    Article  Google Scholar 

  • Alsop D (2011) Advances in non-contrast enhanced perfusion assessment. Signapulse: A GE Healthcare MR Publication Spring 51–54

  • Apkarian AV, Krauss BR, Fredrickson BE, Szeverenyi NM (2001) Imaging the pain of low back pain: functional magnetic resonance imaging in combination with monitoring subjective pain perception allows the study of clinical pain states. Neurosci Lett 299:57–60

    Article  PubMed  CAS  Google Scholar 

  • Apkarian AV, Bushnell MC, Treede RD, Zubieta JK (2005) Human brain mechanisms of pain perception and regulation in health and disease. Eur J Pain 9:463–484

    Article  PubMed  Google Scholar 

  • Ashburner J, Friston KJ (2000) Voxel-based morphometry–the methods. NeuroImage 11:805–821

    Article  PubMed  CAS  Google Scholar 

  • Augustine JR (1985) The insular lobe in primates including humans. Neurol Res 7:2–10

    PubMed  CAS  Google Scholar 

  • Augustine JR (1996) Circuitry and functional aspects of the insular lobe in primates including humans. Brain Res Rev 22:229–244

    Article  PubMed  CAS  Google Scholar 

  • Baliki MN, Geha PY, Apkarian AV, Chialvo DR (2008) Beyond feeling: chronic pain hurts the brain, disrupting the default-mode network dynamics. J Neurosci 28:1398–1403

    Article  PubMed  CAS  Google Scholar 

  • Baliki MN, Baria AT, Apkarian AV (2011) The cortical rhythms of chronic back pain. J Neurosci 31:13981–13990

    Article  PubMed  CAS  Google Scholar 

  • Basser PJ, Pierpaoli C (1996) Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Reson B 111:209–219

    Article  PubMed  CAS  Google Scholar 

  • Beaulieu C (2002) The basis of anisotropic water diffusion in the nervous system—a technical review. NMR Biomed 15:435–455

    Article  PubMed  Google Scholar 

  • Beaulieu C (2009) The biological basis of diffusion. In: Johansen-Berg H, Behrens TEJ (eds) Diffusion MRI. Elsevier, London, pp 105–126

    Chapter  Google Scholar 

  • Behrens TE, Johansen-Berg H (2005) Relating connectional architecture to grey matter function using diffusion imaging. Philos Trans R Soc Lond B Biol Sci 360:903–911

    Article  PubMed  CAS  Google Scholar 

  • Behrens TE, Johansen-Berg H, Woolrich MW, Smith SM, Wheeler-Kingshott CA, Boulby PA, Barker GJ, Sillery EL, Sheehan K, Ciccarelli O, Thompson AJ, Brady JM, Matthews PM (2003a) Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nat Neurosci 6:750–757

    Article  PubMed  CAS  Google Scholar 

  • Behrens TE, Woolrich MW, Jenkinson M, Johansen-Berg H, Nunes RG, Clare S, Matthews PM, Brady JM, Smith SM (2003b) Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magn Reson Med 50:1077–1088

    Article  PubMed  CAS  Google Scholar 

  • Behrens TE, Berg HJ, Jbabdi S, Rushworth MF, Woolrich MW (2007) Probabilistic diffusion tractography with multiple fibre orientations: what can we gain? NeuroImage 34:144–155

    Article  PubMed  CAS  Google Scholar 

  • Berkley KJ, Parmer R (1974) Somatosensory cortical involvement in responses to noxious stimulation in the cat. Exp Brain Res 20:363–374

    Article  PubMed  CAS  Google Scholar 

  • Bingel U, Tracey I (2008) Imaging CNS modulation of pain in humans. Physiology (Bethesda) 23:371–380

    Article  Google Scholar 

  • Bingel U, Schoell E, Herken W, Buchel C, May A (2007) Habituation to painful stimulation involves the antinociceptive system. Pain 131:21–30

    Article  PubMed  CAS  Google Scholar 

  • Bingel U, Herken W, Teutsch S, May A (2008) Habituation to painful stimulation involves the antinociceptive system–a 1-year follow-up of 10 participants. Pain 140:393–394

    Article  PubMed  CAS  Google Scholar 

  • Blankstein U, Chen J, Diamant NE, Davis KD (2010) Altered brain structure in IBS: potential contributions of pre-existing and disease-driven factors. Gastroenterology 138:1783–1789

    Article  PubMed  Google Scholar 

  • Brüggemann J, Shi T, Apkarian AV (1997) Viscero-somatic neurons in the primary somatosensory cortex (SI) of the squirrel monkey. Brain Res 756:297–300

    Article  PubMed  Google Scholar 

  • Burton H, Videen TO, Raichle ME (1993) Tactile-vibration-activated foci in insular and parietal- opercular cortex studied with positron emission tomography: mapping the second somatosensory area in humans. Somatosens Mot Res 10:297–308

    Article  PubMed  CAS  Google Scholar 

  • Bush G, Luu P, Posner MI (2000) Cognitive and emotional influences in anterior cingulate cortex. Trends Cogn Sci 4:215–222

    Article  PubMed  Google Scholar 

  • Casey KL (1982) Neural mechanisms of pain: an overview. Acta Anaesthesiol Scand 74:13–20

    Article  CAS  Google Scholar 

  • Casey KL, Minoshima S, Morrow TJ, Koeppe RA (1996) Comparison of human cerebral activation patterns during cutaneous warmth, heat pain and deep cold pain. J Neurophysiol 76:571–581

    PubMed  CAS  Google Scholar 

  • Chen JY, Blankstein U, Diamant NE, Davis KD (2011) White matter abnormalities in irritable bowel syndrome and relation to individual factors. Brain Res 1392:121–131

    Article  PubMed  CAS  Google Scholar 

  • Chiang CY, Dostrovsky JO, Iwata K, Sessle BJ (2011) Role of glia in orofacial pain. Neuroscientist 17:303–320

    Article  PubMed  CAS  Google Scholar 

  • Chudler EH, Dong WK, Kawakami Y (1986) Cortical nociceptive responses and behavioral correlates in the monkey. Brain Res 397:47–60

    Article  PubMed  CAS  Google Scholar 

  • Chudler EH, Anton F, Dubner R, Kenshalo DR Jr (1990) Responses of SI nociceptive neurons in monkeys and pain sensation in humans elicited by noxious thermal stimulation: effect of interstimulus interval. J Neurophysiol 63:559–569

    PubMed  CAS  Google Scholar 

  • Coghill RC, Talbot JD, Evans AC, Meyer E, Gjedde A, Bushnell MC (1994) Distributed processing of pain and vibration by the human brain. J Neurosci 14:4095–4108

    PubMed  CAS  Google Scholar 

  • Craig AD (1995) Supraspinal projections of lamina I neurons. In: Besson JM, Guilbaud G, Ollat H (eds) Forebrain areas involved in pain processing. John Libbey Eurotext, Paris, pp 13–25

    Google Scholar 

  • Craig AD, Dostrovsky JO (1997) Processing of nociceptive information at supraspinal levels. In: Yaksh TL et al (eds) Anesthesia: biologic foundations. Lippincott-Raven Publishers, Philadelphia, pp 625–642

    Google Scholar 

  • Craig AD, Bushnell MC, Zhang ET, Blomqvist A (1994) A thalamic nucleus specific for pain and temperature sensation. Nature 372:770–773

    Article  PubMed  CAS  Google Scholar 

  • Craig AD, Krout K, Zhang E-T (1995) Cortical projections to VMpo, a specific pain and temperature relay in primate thalamus. Soc Neurosci Abstr 21:1165

    Google Scholar 

  • Craig AD, Reiman EM, Evans A, Bushnell MC (1996) Functional imaging of an illusion of pain. Nature 384:258–260

    Article  PubMed  CAS  Google Scholar 

  • Dai W, Garcia D, de Bazelaire C, Alsop DC (2008) Continuous flow-driven inversion for arterial spin labeling using pulsed radio frequency and gradient fields. Magn Reson Med 60:1488–1497

    Article  PubMed  Google Scholar 

  • DaSilva AF, Granziera C, Tuch DS, Snyder J, Vincent M, Hadjikhani N (2007) Interictal alterations of the trigeminal somatosensory pathway and periaqueductal gray matter in migraine. Neuroreport 18:301–305

    Article  PubMed  Google Scholar 

  • Davis KD (2003) Neurophysiological and anatomical considerations in functional imaging of pain. Pain 105:1–3

    Article  PubMed  Google Scholar 

  • Davis KD (2006) Recent advances and future prospects in neuroimaging of actue and chronic pain. Futur Neurol 1:203–213

    Article  Google Scholar 

  • Davis KD (2011) Neuroimaging of pain: what does it tell us? Curr Opin Support Palliat Care 5:116–121

    Article  PubMed  Google Scholar 

  • Davis KD, Pope GE (2002) Noxious cold evokes multiple sensations with distinct time courses. Pain 98:179–185

    Article  PubMed  Google Scholar 

  • Davis KD, Kwan CL, Crawley AP, Mikulis DJ (1998) Functional MRI study of thalamic and cortical activations evoked by cutaneous heat, cold and tactile stimuli. J Neurophysiology 80:1533–1546

    CAS  Google Scholar 

  • Davis KD, Hutchison WD, Lozano AM, Tasker RR, Dostrovsky JO (2000) Human anterior cingulate cortex neurons modulated by attention- demanding tasks. J Neurophysiol 83:3575–3577

    PubMed  CAS  Google Scholar 

  • Davis KD, Pope GE, Crawley AP, Mikulis DJ (2002) Neural correlates of prickle sensation: a percept-related fMRI study. Nat Neurosci 5:1121–1122

    Article  PubMed  CAS  Google Scholar 

  • Davis KD, Pope GE, Crawley AP, Mikulis DJ (2004) Perceptual illusion of "paradoxical heat" engages the insular cortex. J Neurophysiol 92:1248–1251

    Article  PubMed  CAS  Google Scholar 

  • Davis KD, Taylor KS, Hutchison WD, Dostrovsky JO, McAndrews MP, Richter EO, Lozano AM (2005) Human anterior cingulate cortex neurons encode cognitive and emotional demands. J Neurosci 25:8402–8406

    Article  PubMed  CAS  Google Scholar 

  • Davis KD, Pope G, Chen J, Kwan CL, Crawley AP, Diamant NE (2008) Cortical thinning in IBS: implications for homeostatic, attention, and pain processing. Neurology 70:153–154

    Article  PubMed  CAS  Google Scholar 

  • Davis KD, Taylor KS, Anastakis DJ (2011) Nerve injury triggers changes in the brain. Neuroscientist 17:407–422

    Article  PubMed  Google Scholar 

  • Davis KD, Racine E, Collett B (2012) Neuroethical issues related to the use of brain imaging: Can we and should we use brain imaging as a biomarker to diagnose chronic pain? Pain 153:1555–1559

    Google Scholar 

  • De Luca M, Beckmann CF, De SN, Matthews PM, Smith SM (2006) fMRI resting state networks define distinct modes of long-distance interactions in the human brain. NeuroImage 29:1359–1367

    Article  PubMed  Google Scholar 

  • DeLeo JA, Tanga FY, Tawfik VL (2004) Neuroimmune activation and neuroinflammation in chronic pain and opioid tolerance/hyperalgesia. Neuroscientist 10:40–52

    Article  PubMed  CAS  Google Scholar 

  • Derbyshire SWG (2003) A systematic review of neuroimaging data during visceral stimulation. Am J Gastroenterol 98:12–20

    Article  PubMed  Google Scholar 

  • Devinsky O, Morrell MJ, Vogt BA (1995) Contributions of anterior cingulate cortex to behavior. Brain 118:279–306

    Article  PubMed  Google Scholar 

  • Diamant NE (1995) Overview of functional gut disorders: a challenge. Scand J Gastroenterol 213:1–6

    CAS  Google Scholar 

  • Dick B, Eccleston C, Crombez G (2002) Attentional functioning in fibromyalgia, rheumatoid arthritis, and musculoskeletal pain patients. Arthritis Rheum Arthritis Care Res 47:639–644

    Article  Google Scholar 

  • Dong WK, Chudler EH, Sugiyama K, Roberts VJ, Hayashi T (1994) Somatosensory, multisensory, and task-related neurons in cortical area 7b (PF) of unanesthetized monkeys. J Neurophysiol 72:542–564

    PubMed  CAS  Google Scholar 

  • Dostrovsky JO, Craig AD (1996) Nociceptive neurons in primate insular cortex. Soc Neurosci Abstr 22:111

    Google Scholar 

  • Downar J, Crawley AP, Mikulis DJ, Davis KD (2002) A cortical network sensitive to stimulus salience in a neutral behavioral context across multiple sensory modalities. J Neurophysiology 87:615–620

    Google Scholar 

  • Downar J, Mikulis DJ, Davis KD (2003) Neural correlates of the prolonged salience of painful stimulation. NeuroImage 20:1540–1551

    Article  PubMed  Google Scholar 

  • Duerden EG, Albanese MC (2011) Hum. Brain Mapp.. doi:10.1002/hbm.21416, Dec. 1. [Epub ahead of print]

  • Dumitriu D, Hao J, Hara Y, Kaufmann J, Janssen WG, Lou W, Rapp PR, Morrison JH (2010) Selective changes in thin spine density and morphology in monkey prefrontal cortex correlate with aging-related cognitive impairment. J Neurosci 30:7507–7515

    Article  PubMed  CAS  Google Scholar 

  • Dyrby TB, Sogaard LV, Parker GJ, Alexander DC, Lind NM, Baare WF, Hay-Schmidt A, Eriksen N, Pakkenberg B, Paulson OB, Jelsing J (2007) Validation of in vitro probabilistic tractography. NeuroImage 37:1267–1277

    Article  PubMed  Google Scholar 

  • Eccleston C (1995) The attentional control of pain: methodological and theoretical concerns. Pain 63:3–10

    Article  PubMed  CAS  Google Scholar 

  • Eccleston C, Crombez G, Aldrich S, Stannard C (1997) Attention and somatic awareness in chronic pain. Pain 72:209–215

    Article  PubMed  CAS  Google Scholar 

  • Edwards RR, Bingham CO III, Bathon J, Haythornthwaite JA (2006) Catastrophizing and pain in arthritis, fibromyalgia, and other rheumatic diseases. Arthritis Rheum 55:325–332

    Article  PubMed  Google Scholar 

  • Eickhoff SB, Jbabdi S, Caspers S, Laird AR, Fox PT, Zilles K, Behrens TE (2010) Anatomical and functional connectivity of cytoarchitectonic areas within the human parietal operculum. J Neurosci 30:6409–6421

    Article  PubMed  CAS  Google Scholar 

  • Erpelding N, Moayedi M, Seminowicz D, Crawley A, Davis K (2010) Cortical grey matter reflects fMRI pain responses and cognitive modulation strategies during pain. Neuroimage Supplement

  • Erpelding N, Moayedi M, Davis KD (2012a) Brain gray matter reflects pain response strategies during a cognitive interference task. 14th World Congress on Pain, conference proceedings

  • Erpelding N, Moayedi M, Davis KD (2012b) Cortical thickness correlates of pain and temperature sensitivity. Pain 153:1602–1609

    Google Scholar 

  • Forsythe ME, Dunbar MJ, Hennigar AW, Sullivan MJ, Gross M (2008) Prospective relation between catastrophizing and residual pain following knee arthroplasty: two-year follow-up. Pain Res Manag 13:335–341

    PubMed  Google Scholar 

  • Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van E, Raichle ME (2005) The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S A 102:9673–9678

    Article  PubMed  CAS  Google Scholar 

  • Fransson P (2005) Spontaneous low-frequency BOLD signal fluctuations: an fMRI investigation of the resting-state default mode of brain function hypothesis. Hum Brain Mapp 26:15–29

    Article  PubMed  Google Scholar 

  • Friston KJ (1994) Functional and effective connectivity in neuroimaging: a synthesis. Hum Brain Mapp 2:56–78

    Article  Google Scholar 

  • Fujiwara S, Sasaki M, Wada T, Kudo K, Hirooka R, Ishigaki D, Nishikawa Y, Ono A, Yamaguchi M, Ogasawara K (2011) High-resolution diffusion tensor imaging for the detection of diffusion abnormalities in the trigeminal nerves of patients with trigeminal neuralgia caused by neurovascular compression. J Neuroimaging 21:e102–e108

    Article  PubMed  Google Scholar 

  • Geha PY, Baliki MN, Harden RN, Bauer WR, Parrish TB, Apkarian AV (2008) The brain in chronic CRPS pain: abnormal gray-white matter interactions in emotional and autonomic regions. Neuron 60:570–581

    Article  PubMed  CAS  Google Scholar 

  • Greicius MD, Menon V (2004) Default-mode activity during a passive sensory task: uncoupled from deactivation but impacting activation. J Cogn Neurosci 16:1484–1492

    Article  PubMed  Google Scholar 

  • Greicius MD, Krasnow B, Reiss AL, Menon V (2003) Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci U S A 100:253–258

    Article  PubMed  CAS  Google Scholar 

  • Greicius MD, Srivastava G, Reiss AL, Menon V (2004) Default-mode network activity distinguishes Alzheimer's disease from healthy aging: evidence from functional MRI. Proc Natl Acad Sci U S A 101:4637–4642

    Article  PubMed  CAS  Google Scholar 

  • Guo LH, Schluesener HJ (2007) The innate immunity of the central nervous system in chronic pain: the role of Toll-like receptors. Cell Mol Life Sci 64:1128–1136

    Article  PubMed  CAS  Google Scholar 

  • Gusnard DA, Raichle ME, Raichle ME (2001) Searching for a baseline: functional imaging and the resting human brain. Nat Rev Neurosci 2:685–694

    Article  PubMed  CAS  Google Scholar 

  • Gwilym SE, Fillipini N, Douaud G, Carr AJ, Tracey I (2010) Thalamic atrophy associated with painful osteoarthritis of the hip is reversible after arthroplasty; a longitudinal voxel-based-morphometric study. Arthritis Rheum 62:2930–2940

    Article  PubMed  Google Scholar 

  • Hashmi JA, Davis KD (2008) Effect of static and dynamic heat pain stimulus profiles on the temporal dynamics and interdependence of pain qualities, intensity, and affect. J Neurophysiol 100:1706–1715

    Article  PubMed  Google Scholar 

  • Hashmi JA, Davis KD (2009) Women experience greater heat pain adaptation and habituation than men. Pain 145:350–357

    Article  PubMed  Google Scholar 

  • Honey CJ, Sporns O, Cammoun L, Gigandet X, Thiran JP, Meuli R, Hagmann P (2009) Predicting human resting-state functional connectivity from structural connectivity. Proc Natl Acad Sci U S A 106:2035–2040

    Article  PubMed  CAS  Google Scholar 

  • Howard MA, Krause K, Khawaja N, Massat N, Zelaya F, Schumann G, Huggins JP, Vennart W, Williams SC, Renton TF (2011) Beyond patient reported pain: perfusion magnetic resonance imaging demonstrates reproducible cerebral representation of ongoing post-surgical pain. PLoS One 6:e17096

    Article  PubMed  CAS  Google Scholar 

  • Hsieh JC, Belfrage M, Stone-Elander S, Hansson P, Ingvar M (1995) Central representation of chronic ongoing neuropathic pain studied by positron emission tomography. Pain 63:225–236

    Article  PubMed  CAS  Google Scholar 

  • Hutchison WD, Davis KD, Lozano AM, Tasker RR, Dostrovsky JO (1999) Pain-related neurons in the human cingulate cortex. Nat Neurosci 2:403–405

    Article  PubMed  CAS  Google Scholar 

  • Ichesco E, Quintero A, Clauw DJ, Peltier S, Sundgren PM, Gerstner GE, Schmidt-Wilcke T (2012) Altered functional connectivity between the insula and the cingulate cortex in patients with temporomandibular disorder: A pilot study. Headache 52:441–454

    Article  PubMed  Google Scholar 

  • Kalliomäki J, Weng H-R, Nilsson H-J, Schouenborg J (1993) Nociceptive C fibre input to the primary somatosensory cortex (SI). A field potential study in the rat. Brain Res 622:262–270

    Article  PubMed  Google Scholar 

  • Kato Y, Araki N, Matsuda H, Ito Y, Suzuki C (2010) Arterial spin-labeled MRI study of migraine attacks treated with rizatriptan. J Headache Pain 11:255–258

    Article  PubMed  Google Scholar 

  • Keefe FJ, Brown GK, Wallston KA, Caldwell DS (1989) Coping with rheumatoid arthritis pain: catastrophizing as a maladaptive strategy. Pain 37:51–56

    Article  PubMed  CAS  Google Scholar 

  • Kenshalo DR Jr, Isensee O (1983) Responses of primate SI cortical neurons to noxious stimuli. J Neurophysiol 50:1479–1496

    PubMed  Google Scholar 

  • Kenshalo DR, Iwata K, Sholas M, Thomas DA (2000) Response properties and organization of nociceptive neurons in area 1 of monkey primary somatosensory cortex. J Neurophysiol 84:719–729

    PubMed  CAS  Google Scholar 

  • Kewman DG, Vaishampayan N, Zald D, Han B (1991) Cognitive impairment in musculoskeletal pain patients. Int J Psychiatr Med 21:253–262

    Article  CAS  Google Scholar 

  • Kucyi A, Moayedi M, Weissman-Fogel I, Hodaie M, Davis KD (2012) Hemispheric asymmetry in white matter connectivity of the temporoparietal junction with the insula and prefrontal cortex. PLoS One. in press

  • Kwan CL, Diamant NE, Mikula K, Davis KD (2005a) Characteristics of rectal perception are altered in irritable bowel syndrome. Pain 113:160–171

    Article  PubMed  Google Scholar 

  • Kwan CL, Diamant NE, Pope G, Mikula K, Mikulis DJ, Davis KD (2005b) Abnormal forebrain activity in functional bowel disorder patients with chronic pain. Neurology 65:1268–1277

    Article  PubMed  CAS  Google Scholar 

  • Le BD, Johansen-Berg H (2012) Diffusion MRI at 25: exploring brain tissue structure and function. NeuroImage 61:324–341

    Article  Google Scholar 

  • Leal PR, Roch JA, Hermier M, Souza MA, Cristino-Filho G, Sindou M (2011) Structural abnormalities of the trigeminal root revealed by diffusion tensor imaging in patients with trigeminal neuralgia caused by neurovascular compression: a prospective, double-blind, controlled study. Pain 152:2357–2364

    Article  PubMed  Google Scholar 

  • Legrain V, Damme SV, Eccleston C, Davis KD, Seminowicz DA, Crombez G (2009) A neurocognitive model of attention to pain: behavioral and neuroimaging evidence. Pain 144:230–232

    Article  PubMed  Google Scholar 

  • Legrain V, Iannetti GD, Plaghki L, Mouraux A (2010) The pain matrix reloaded: a salience detection system for the body. Prog Neurobiol 93:111–124

    Article  PubMed  Google Scholar 

  • Lerch JP, Yiu AP, Martinez-Canabal A, Pekar T, Bohbot VD, Frankland PW, Henkelman RM, Josselyn SA, Sled JG (2011) Maze training in mice induces MRI-detectable brain shape changes specific to the type of learning. NeuroImage 54:2086–2095

    Article  PubMed  Google Scholar 

  • Liang M, Mouraux A, Iannetti GD (2012) Bypassing Primary Sensory Cortices—A Direct Thalamocortical Pathway for Transmitting Salient Sensory Information. Cereb Cortex Jan 23. [Epub ahead of print]

  • Margulies DS, Kelly AM, Uddin LQ, Biswal BB, Castellanos FX, Milham MP (2007) Mapping the functional connectivity of anterior cingulate cortex. NeuroImage 37:579–588

    Article  PubMed  Google Scholar 

  • Mars RB, Jbabdi S, Sallet J, O'Reilly JX, Croxson PL, Olivier E, Noonan MP, Bergmann C, Mitchell AS, Baxter MG, Behrens TE, Johansen-Berg H, Tomassini V, Miller KL, Rushworth MF (2011) Diffusion-weighted imaging tractography-based parcellation of the human parietal cortex and comparison with human and macaque resting-state functional connectivity. J Neurosci 31:4087–4100

    Article  PubMed  CAS  Google Scholar 

  • May A (2008) Chronic pain may change the structure of the brain. Pain 137:7–15

    Article  PubMed  Google Scholar 

  • Mazoyer B, Zago L, Mellet E, Bricogne S, Etard O, Houde O, Crivello F, Joliot M, Petit L, Tzourio-Mazoyer N (2001) Cortical networks for working memory and executive functions sustain the conscious resting state in man. Brain Res Bull 54:287–298

    Article  PubMed  CAS  Google Scholar 

  • Metz AE, Yau HJ, Centeno MV, Apkarian AV, Martina M (2009) Morphological and functional reorganization of rat medial prefrontal cortex in neuropathic pain. Proc Natl Acad Sci U S A 106:2423–2428

    Article  PubMed  CAS  Google Scholar 

  • Milligan ED, Watkins LR (2009) Pathological and protective roles of glia in chronic pain. Nat Rev Neurosci 10:23–36

    Article  PubMed  CAS  Google Scholar 

  • Moayedi M, Weissman-Fogel I, Crawley AP, Goldberg MB, Freeman BV, Tenenbaum HC, Davis KD (2011) Contribution of chronic pain and neuroticism to abnormal forebrain gray matter in patients with temporomandibular disorder. NeuroImage 55:277–286

    Article  PubMed  Google Scholar 

  • Moayedi M, Weissman-Fogel I, Salomons TV, Crawley AP, Goldberg MB, Freeman BV, Tenenbaum HC, Davis KD (2012) White matter brain and trigeminal nerve abnormalities in temporomandibular disorder. Pain 153:1467–1477

    Article  PubMed  Google Scholar 

  • Mori S, Zhang J (2006) Principles of Diffusion Tensor Imaging and Its Applications to Basic Neuroscience Research. Neuron 51:527–539

    Article  PubMed  CAS  Google Scholar 

  • Moseley M, Bammer R, Illes J (2002) Diffusion-tensor imaging of cognitive performance. Brain Cogn 50:396–413

    Article  PubMed  Google Scholar 

  • Napadow V, LaCount L, Park K, As-Sanie S, Clauw DJ, Harris RE (2010) Intrinsic brain connectivity in fibromyalgia is associated with chronic pain intensity. Arthritis Rheum 62:2545–2555

    Article  PubMed  Google Scholar 

  • Napadow V, Kim J, Clauw DJ, Harris RE (2012) Decreased intrinsic brain connectivity is associated with reduced clinical pain in fibromyalgia. Arthritis Rheum

  • Obermann M, Nebel K, Schumann C, Holle D, Gizewski ER, Maschke M, Goadsby PJ, Diener HC, Katsarava Z (2009) Gray matter changes related to chronic posttraumatic headache. Neurology 73:978–983

    Article  PubMed  Google Scholar 

  • Ogawa S, Lee TM, Kay AR, Tank DW (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA 87:9868–9872

    Article  PubMed  CAS  Google Scholar 

  • Osman A, Barrios FX, Kopper BA, Hauptmann W, Jones J, O'Neill E (1997) Factor structure, reliability, and validity of the Pain Catastrophizing Scale. J Behav Med 20:589–605

    Article  PubMed  CAS  Google Scholar 

  • Osman A, Barrios FX, Gutierrez PM, Kopper BA, Merrifield T, Grittmann L (2000) The Pain Catastrophizing Scale: further psychometric evaluation with adult samples. J Behav Med 23:351–365

    Article  PubMed  CAS  Google Scholar 

  • Owen DG, Bureau Y, Thomas AW, Prato FS, St Lawrence KS (2008) Quantification of pain-induced changes in cerebral blood flow by perfusion MRI. Pain 136:85–96

    Article  PubMed  CAS  Google Scholar 

  • Owen DG, Clarke CF, Ganapathy S, Prato FS, St Lawrence KS (2010) Using perfusion MRI to measure the dynamic changes in neural activation associated with tonic muscular pain. Pain 148:375–386

    Article  PubMed  Google Scholar 

  • Pakkenberg B, Gundersen HJ (1997) Neocortical neuron number in humans: effect of sex and age. J Comp Neurol 384:312–320

    Article  PubMed  CAS  Google Scholar 

  • Pan H, Epstein J, Silbersweig DA, Stern E (2011) New and emerging imaging techniques for mapping brain circuitry. Brain Res Rev 67:226–251

    Article  PubMed  Google Scholar 

  • Papaioannou M, Skapinakis P, Damigos D, Mavreas V, Broumas G, Palgimesi A (2009) The role of catastrophizing in the prediction of postoperative pain. Pain Med 10:1452–1459

    Article  PubMed  Google Scholar 

  • Park DC, Glass JM, Minear M, Crofford LJ (2001) Cognitive function in fibromyalgia patients. Arthritis Rheum 44:2125–2133

    Article  PubMed  CAS  Google Scholar 

  • Pavlin DJ, Sullivan MJ, Freund PR, Roesen K (2005) Catastrophizing: a risk factor for postsurgical pain. Clin J Pain 21:83–90

    Article  PubMed  Google Scholar 

  • Peters A, Morrison JH, Rosene DL, Hyman BT (1998) Feature article: are neurons lost from the primate cerebral cortex during normal aging? Cereb. Cortex 8:295–300

    Article  CAS  Google Scholar 

  • Peyron R, Garcia-Larrea L, Gregoire MC, Costes N, Convers P, Lavenne F, Mauguiere F, Michel D, Laurent B (1999) Haemodynamic brain responses to acute pain in humans: sensory and attentional networks. Brain 122(Pt 9):1765–1780

    Article  PubMed  Google Scholar 

  • Peyron R, Laurent B, Garcia-Larrea L (2000) Functional imaging of brain responses to pain. A review and meta–analysis. Neurophysiol Clin 30:263–288

    Article  PubMed  CAS  Google Scholar 

  • Pierpaoli C, Jezzard P, Basser PJ, Barnett A, Di CG (1996) Diffusion tensor MR imaging of the human brain. Radiology 201:637–648

    PubMed  CAS  Google Scholar 

  • Pincus T, Morley S (2001) Cognitive-processing bias in chronic pain: a review and integration. Psychol Bull 127:599–617

    Article  PubMed  CAS  Google Scholar 

  • Ploner M, Lee MC, Wiech K, Bingel U, Tracey I (2010) Prestimulus functional connectivity determines pain perception in humans. Proc Natl Acad Sci U S A 107:355–360

    Article  PubMed  CAS  Google Scholar 

  • Porro CA, Lui F, Facchin P, Maieron M, Baraldi P (2004) Percept-related activity in the human somatosensory system: functional magnetic resonance imaging studies. Magn Reson Imag 22:1539–1548

    Article  Google Scholar 

  • Price DD, Barrell JJ, Gracely RH (1980) A psychophysical analysis of experiential factors that selectively influence the affective dimension of pain. Pain 8:137–149

    Article  PubMed  CAS  Google Scholar 

  • Price DD, McHaffie JG, Larson MA (1989) Spatial summation of heat-induced pain: influence of stimulus area and spatial separation of stimuli on perceived pain sensation intensity and unpleasantness. J Neurophysiol 89:1270–1279

    Google Scholar 

  • Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL (2001) A default mode of brain function. Proc Natl Acad Sci U S A 98:676–682

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Raecke R, Niemeier A, Ihle K, Ruether W, May A (2009) Brain gray matter decrease in chronic pain is the consequence and not the cause of pain. J Neurosci 29:13746–13750

    Article  PubMed  CAS  Google Scholar 

  • Salomons TV, Moayedi M, Weissman-Fogel I, Goldberg MB, Freeman BV, Tenenbaum HC, Davis KD (2012) Perceived Helplessness is Associated with Individual Differences in the Central Motor Output System. Eur J Neurosci. 35:1481–1487

    Google Scholar 

  • Schneider RJ, Friedman DP, Mishkin M (1993) A modality-specific somatosensory area within the insula of the rhesus monkey. Brain Res 621:116–120

    Article  PubMed  CAS  Google Scholar 

  • Schweinhardt P, Kuchinad A, Pukall CF, Bushnell MC (2008) Increased gray matter density in young women with chronic vulvar pain. Pain 140:411–419

    Article  PubMed  CAS  Google Scholar 

  • Seehaus AK, Roebroeck A, Chiry O, Kim DS, Ronen I, Bratzke H, Goebel R, Galuske RA (2012) Histological Validation of DW-MRI Tractography in Human Postmortem Tissue. Cereb Cortex

  • Seminowicz DA, Davis KD (2006) Cortical responses to pain in healthy individuals depends on pain catastrophizing. Pain 120:297–306

    Article  PubMed  Google Scholar 

  • Seminowicz DA, Davis KD (2007a) A re-examination of pain-cognition interactions: implications for neuroimaging. Pain 130:8–13

    Article  PubMed  Google Scholar 

  • Seminowicz DA, Davis KD (2007b) Pain enhances functional connectivity of a brain network evoked by performance of a cognitive task. J Neurophysiol 97:3651–3659

    Article  PubMed  Google Scholar 

  • Seminowicz DA, Mikulis DJ, Davis KD (2004) Cognitive modulation of pain-related brain responses depends on behavioral strategy. Pain 112:48–58

    Article  PubMed  CAS  Google Scholar 

  • Seminowicz DA, Wideman TH, Naso L, Hatami-Khoroushahi Z, Fallatah S, Ware MA, Jarzem P, Bushnell MC, Shir Y, Ouellet JA, Stone LS (2011) Effective treatment of chronic low back pain in humans reverses abnormal brain anatomy and function. J Neurosci 31:7540–7550

    Article  PubMed  CAS  Google Scholar 

  • Severeijns R, Vlaeyen JW, van den Hout MA, Weber WE (2001) Pain catastrophizing predicts pain intensity, disability, and psychological distress independent of the level of physical impairment. Clin J Pain 17:165–172

    Article  PubMed  CAS  Google Scholar 

  • Sikes RW, Vogt BA (1992) Nociceptive neurons in area 24 of rabbit cingulate cortex. J Neurophysiol 68:1720–1732

    PubMed  CAS  Google Scholar 

  • Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE, Mackay CE, Watkins KE, Ciccarelli O, Cader MZ, Matthews PM, Behrens TE (2006) Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. NeuroImage 31:1487–1505

    Article  PubMed  Google Scholar 

  • Smith SM, Fox PT, Miller KL, Glahn DC, Fox PM, Mackay CE, Filippini N, Watkins KE, Toro R, Laird AR, Beckmann CF (2009) Correspondence of the brain's functional architecture during activation and rest. Proc Natl Acad Sci U S A 106:13040–13045

    Article  PubMed  CAS  Google Scholar 

  • Strigo IA, Duncan GH, Boivin M, Bushnell MC (2003) Differentiation of visceral and cutaneous pain in the human brain. J Neurophysiol 89:3294–3303

    Article  PubMed  Google Scholar 

  • Sullivan MJ, Bishop SR, Pivik J (1995) The pain catastrophizing scale: development and validation. Psychol Assess 7:524–532

    Article  Google Scholar 

  • Sullivan MJ, Thorn B, Haythornthwaite JA, Keefe F, Martin M, Bradley LA, Lefebvre JC (2001) Theoretical perspectives on the relation between catastrophizing and pain. Clin J Pain 17:52–64

    Article  PubMed  CAS  Google Scholar 

  • Sullivan M, Tanzer M, Stanish W, Fallaha M, Keefe FJ, Simmonds M, Dunbar M (2009) Psychological determinants of problematic outcomes following Total Knee Arthroplasty. Pain 143:123–129

    Article  PubMed  Google Scholar 

  • Svensson P, Minoshima S, Beydoun A, Morrow TJ, Casey KL (1997) Cerebral processing of acute skin and muscle pain in humans. J Neurophysiol 78:450–460

    PubMed  CAS  Google Scholar 

  • Szabo N, Kincses ZT, Pardutz A, Tajti J, Szok D, Tuka B, Kiraly A, Babos M, Voros E, Bomboi G, Orzi F, Vecsei L (2012) White matter microstructural alterations in migraine: a diffusion-weighted MRI study. Pain 153:651–656

    Article  PubMed  Google Scholar 

  • Taylor KS, Seminowicz DA, Davis KD (2009) Two systems of resting state connectivity between the insula and cingulate cortex. Hum Brain Mapp 30:2731–2745

    Article  PubMed  Google Scholar 

  • Taylor KS, Anastakis DJ, Davis KD (2010) Chronic Pain and Sensorimotor Deficits Following Peripheral Nerve Injury. Pain 151:582–591

    Article  PubMed  Google Scholar 

  • Teutsch S, Herken W, Bingel U, Schoell E, May A (2008) Changes in brain gray matter due to repetitive painful stimulation. NeuroImage 42:845–849

    Article  PubMed  CAS  Google Scholar 

  • Torta DM, Cauda F (2011) Different functions in the cingulate cortex, a meta-analytic connectivity modeling study. NeuroImage 56:2157–2172

    Article  PubMed  CAS  Google Scholar 

  • Tracey I, Johns E (2010) The pain matrix: reloaded or reborn as we image tonic pain using arterial spin labelling. Pain 148:359–360

    Article  PubMed  Google Scholar 

  • Treede RD, Kenshalo DR, Gracely RH, Jones AKP (1999) The cortical representation of pain. Pain 79:105–111

    Article  PubMed  CAS  Google Scholar 

  • Turk DC (2002) A diathesis-stress model of chronic pain and disability following traumatic injury. Pain Res Manag 7:9–19

    PubMed  Google Scholar 

  • Vierck CJ Jr, Cannon RL, Fry G, Maixner W, Whitsel BL (1997) Characteristics of temporal summation of second pain sensations elicited by brief contact of glabrous skin by a preheated thermode. J Neurophysiol 78:992–1002

    PubMed  Google Scholar 

  • Vogt BA, Sikes RW, Vogt LT (1993) Anterior cingulate cortex and the medial pain system. In: Vogt BA, Gabriel M (eds) Neurobiology of cingulate cortex and limbic thalamus: a comprehensive handbook. Birkhauser, Boston, pp 313–344

    Google Scholar 

  • Walther K, Bendlin BB, Glisky EL, Trouard TP, Lisse JR, Posever JO, Ryan L (2011) Anti-inflammatory drugs reduce age-related decreases in brain volume in cognitively normal older adults. Neurobiol Aging 32:497–505

    Article  PubMed  CAS  Google Scholar 

  • Wasan AD, Loggia ML, Chen LQ, Napadow V, Kong J, Gollub RL (2011) Neural Correlates of Chronic Low Back Pain Measured by Arterial Spin Labeling. Anesthesiology 115:364–374

    Article  PubMed  Google Scholar 

  • Watkins LR, Maier SF, Goehler LE (1995) Immune activation: the role of pro-inflammatory cytokines in inflammation, illness responses and pathological pain states. Pain 63:289–302

    Article  PubMed  CAS  Google Scholar 

  • Watkins LR, Milligan ED, Maier SF (2001) Spinal cord glia: new players in pain. Pain 93:201–205

    Article  PubMed  CAS  Google Scholar 

  • Weissman-Fogel I, Moayedi M, Taylor KS, Pope G, Davis KD (2010) Cognitive and default-mode resting state networks: do male and female brains "rest" differently? Hum Brain Mapp 31:1713–1726

    PubMed  Google Scholar 

  • Weissman-Fogel I, Moayedi M, Tenenbaum HC, Goldberg MB, Freeman BV, Davis KD (2011) Abnormal cortical activity in patients with temporomandibular disorder evoked by cognitive and emotional tasks. Pain 152:384–396

    Article  PubMed  CAS  Google Scholar 

  • Willis WD Jr (1997) Nociceptive functions of thalamic neurons. In: Steriade M, Jones EG, McCormick DA (eds) Thalamus. Elsevier Science, Oxford, pp 373–424

    Google Scholar 

  • Wu WC, St Lawrence KS, Licht DJ, Wang DJ (2010) Quantification issues in arterial spin labeling perfusion magnetic resonance imaging. Top Magn Reson Imag 21:65–73

    Article  Google Scholar 

  • Xu G, Rowley HA, Wu G, Alsop DC, Shankaranarayanan A, Dowling M, Christian BT, Oakes TR, Johnson SC (2010) Reliability and precision of pseudo-continuous arterial spin labeling perfusion MRI on 3.0 T and comparison with 15O-water PET in elderly subjects at risk for Alzheimer's disease. NMR Biomed 23:286–293

    Article  PubMed  CAS  Google Scholar 

  • Yan H, Zuo XN, Wang D, Wang J, Zhu C, Milham MP, Zhang D, Zang Y (2009) Hemispheric asymmetry in cognitive division of anterior cingulate cortex: a resting-state functional connectivity study. NeuroImage 47:1579–1589

    Article  PubMed  Google Scholar 

  • Younger JW, Shen YF, Goddard G, Mackey SC (2010) Chronic myofascial temporomandibular pain is associated with neural abnormalities in the trigeminal and limbic systems. Pain 149:222–228

    Article  PubMed  Google Scholar 

  • Yu C, Zhou Y, Liu Y, Jiang T, Dong H, Zhang Y, Walter M (2011) Functional segregation of the human cingulate cortex is confirmed by functional connectivity based neuroanatomical parcellation. NeuroImage 54:2571–2581

    Article  PubMed  Google Scholar 

  • Zeidan F, Martucci KT, Kraft RA, Gordon NS, McHaffie JG, Coghill RC (2011) Brain mechanisms supporting the modulation of pain by mindfulness meditation. J Neurosci 31:5540–5548

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The Davis lab and M. Moayedi are supported by funds from the Canadian Institutes of Health Research and the CIHR strategic training program Cell Signals In Mucosal Inflammation and Pain.

Conflict of interest

The authors have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen D. Davis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davis, K.D., Moayedi, M. Central Mechanisms of Pain Revealed Through Functional and Structural MRI. J Neuroimmune Pharmacol 8, 518–534 (2013). https://doi.org/10.1007/s11481-012-9386-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-012-9386-8

Keywords

Navigation