Skip to main content
Log in

Degradome sequencing reveals endogenous small RNA targets in rice (Oryza sativa L. ssp. indica)

  • Research Article
  • Published:
Frontiers in Biology

Abstract

MicroRNAs (miRNAs) and small interfering RNAs (siRNAs) regulate gene expression in eukaryotes. Plant miRNAs modulate their targets mainly via messenger RNA (mRNA) cleavage. Small RNA (sRNA) targets have been extensively investigated in Arabidopsis using computational prediction, experimental validation, and degradome sequencing. However, small RNA targets are largely unknown in rice (Oryza sativa). Here, we report global identification of small RNA targets using high throughput degradome sequencing in the rice indica cultivar 93–11 (Oryza sativa L. ssp. indica). One hundred and seventy-seven transcripts targeted by a total of 87 unique miRNAs were identified. Of targets for the conserved miRNAs between Arabidopsis and rice, transcription factors comprise around 70% (58 in 82), indicating that these miRNAs act as masters of gene regulatory nodes in rice. In contrast, non-conserved miRNAs targeted diverse genes which provide more complex regulatory networks. In addition, 5 AUXIN RESPONSE FACTORs (ARFs) cleaved by the TAS3 derived ta-siRNAs were also detected. A total of 40 sRNA targets were further validated via RNA ligasemediated 5’ rapid amplification of cDNA ends (RLM 5’-RACE). Our degradome results present a detailed sRNA-target interaction atlas, which provides a guide for the study of the roles of sRNAs and their targets in rice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Addo-Quaye C, Miller W, Axtell MJ (2009). CleaveLand: a pipeline for using degradome data to find cleaved small RNA targets. Bioinformatics, 25: 130–131

    Article  CAS  PubMed  Google Scholar 

  • Addo-Quaye C, Eshoo TW, Bartel D P, Axtell M J (2008). Endogenous siRNA and miRNA targets identified by sequencing of the Arabidopsis degradome. Curr Biol, 18: 758–762

    Article  CAS  PubMed  Google Scholar 

  • Allen E, Xie Z, Gustafson A M, Carrington J C (2005). microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell, 121: 207–221

    Article  CAS  PubMed  Google Scholar 

  • Archak S, Nagaraju J (2007). Computational prediction of rice (Oryza sativa) miRNA targets. Genomics Proteomics Bioinformatics, 5: 196–206

    Article  CAS  PubMed  Google Scholar 

  • Axtell M J, Snyder J A, Bartel D P (2007). Common functions for diverse small RNAs of land plants. Plant Cell, 19: 1750–1769

    Article  CAS  PubMed  Google Scholar 

  • Bartel D P (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116: 281–297

    Article  CAS  PubMed  Google Scholar 

  • Bartel D P (2009). MicroRNAs: target recognition and regulatory functions. Cell, 136: 215–233

    Article  CAS  PubMed  Google Scholar 

  • Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, Dunoyer P, Yamamoto Y Y, Sieburth L, Voinnet O (2008). Widespread translational inhibition by plant miRNAs and siRNAs. Science, 320: 1185–1190

    Article  CAS  PubMed  Google Scholar 

  • German M A, Luo S, Schroth G, Meyers B C, Green P J (2009). Construction of Parallel Analysis of RNA Ends (PARE) libraries for the study of cleaved miRNA targets and the RNA degradome. Nat Protoc, 4: 356–362

    Article  CAS  PubMed  Google Scholar 

  • German M A, Pillay M, Jeong D H, Hetawal A, Luo S, Janardhanan P, Kannan V, Rymarquis L A, Nobuta K, German R, De Paoli E, Lu C, Schroth G, Meyers B C, Green P J (2008). Global identification of microRNA-target RNA pairs by parallel analysis of RNA ends. Nat Biotechnol, 26: 941–946

    Article  CAS  PubMed  Google Scholar 

  • Goff S A, Ricke D, Lan T H, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, Hadley D, Hutchison D, Martin C, Katagiri F, Lange B M, Moughamer T, Xia Y, Budworth P, Zhong J, Miguel T, Paszkowski U, Zhang S, Colbert M, Sun W L, Chen L, Cooper B, Park S, Wood T C, Mao L, Quail P, Wing R, Dean R, Yu Y, Zharkikh A, Shen R, Sahasrabudhe S, Thomas A, Cannings R, Gutin A, Pruss D, Reid J, Tavtigian S, Mitchell J, Eldredge G, Scholl T, Miller R M, Bhatnagar S, Adey N, Rubano T, Tusneem N, Robinson R, Feldhaus J, Macalma T, Oliphant A, Briggs S (2002). A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science, 296: 92–100

    Article  CAS  PubMed  Google Scholar 

  • Gregory B D, O’Malley R C, Lister R, Urich M A, Tonti-Filippini J, Chen H, Millar A H, Ecker J R (2008). A link between RNA metabolism and silencing affecting Arabidopsis development. Dev Cell, 14: 854–866

    Article  CAS  PubMed  Google Scholar 

  • Griffiths-Jones S, Saini H K, van Dongen S, Enright A J (2008). miRBase: tools for microRNA genomics. Nucleic Acids Res, 36: D154–158

    Article  CAS  PubMed  Google Scholar 

  • Hock J, Meister G (2008). The Argonaute protein family. Genome Biol, 9: 210

    Article  PubMed  Google Scholar 

  • Johnson C, Kasprzewska A, Tennessen K, Fernandes J, Nan G L,Walbot V, Sundaresan V, Vance V, Bowman L H (2009). Clusters and superclusters of phased small RNAs in the developing inflorescence of rice. Genome Res, 19: 1429–1440

    Article  CAS  PubMed  Google Scholar 

  • Jones-Rhoades M W, Bartel D P (2004). Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell, 14: 787–799

    Article  CAS  PubMed  Google Scholar 

  • Jones-Rhoades M W, Bartel D P, Bartel B (2006). MicroRNAS and their regulatory roles in plants. Annu Rev Plant Biol, 57: 19–53

    Article  CAS  PubMed  Google Scholar 

  • Kawashima C G, Yoshimoto N, Maruyama-Nakashita A, Tsuchiya Y N, Saito K, Takahashi H, Dalmay T (2009). Sulphur starvation induces the expression of microRNA-395 and one of its target genes but in different cell types. Plant J, 57: 313–321

    Article  CAS  PubMed  Google Scholar 

  • Lacombe S, Nagasaki H, Santi C, Duval D, Piegu B, Bangratz M, Breitler J C, Guiderdoni E, Brugidou C, Hirsch J, Cao X, Brice C,Panaud O, Karlowski W M, Sato Y, Echeverria M (2008). Identification of precursor transcripts for 6 novel miRNAs expands the diversity on the genomic organisation and expression of miRNA genes in rice. BMC Plant Biol, 8: 123

    Article  PubMed  Google Scholar 

  • Li R, Li Y, Kristiansen K, Wang J (2008). SOAP: short oligonucleotide alignment program. Bioinformatics, 24: 713–714

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Li P, Li X, Liu C, Cao S, Chu C, Cao X (2005). Loss of function of OsDCL1 affects microRNA accumulation and causes developmental defects in rice. Plant Physiol, 139: 296–305

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Chen Z, Song X, Liu C, Cui X, Zhao X, Fang J, Xu W, Zhang H, Wang X, Chu C, Deng X, Xue Y, Cao X (2007a). Oryza sativa dicerlike4 reveals a key role for small interfering RNA silencing in plant development. Plant Cell, 19: 2705–2718

    Article  CAS  PubMed  Google Scholar 

  • Liu P P, Montgomery T A, Fahlgren N, Kasschau K D, Nonogaki H, Carrington J C (2007b). Repression of AUXIN RESPONSE FACTOR10 by microRNA160 is critical for seed germination and post-germination stages. Plant J, 52: 133–146

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Zhang Y C, Wang C Y, Luo Y C, Huang Q J, Chen S Y, Zhou H, Qu L H, Chen Y Q (2009). Expression analysis of phytohormoneregulated microRNAs in rice, implying their regulation roles in plant hormone signaling. FEBS Lett, 583: 723–728

    Article  CAS  PubMed  Google Scholar 

  • Llave C, Xie Z, Kasschau K D, Carrington J C (2002a). Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science, 297: 2053–2056

    Article  CAS  PubMed  Google Scholar 

  • Llave C, Kasschau K D, Rector M A, Carrington J C (2002b). Endogenous and silencing-associated small RNAs in plants. Plant Cell, 14: 1605–1619

    Article  CAS  PubMed  Google Scholar 

  • Lu C, Jeong D H, Kulkarni K, Pillay M, Nobuta K, German R, Thatcher S R, Maher C, Zhang L, Ware D, Liu B, Cao X, Meyers B C, Green P J (2008). Genome-wide analysis for discovery of rice microRNAs reveals natural antisense microRNAs (nat-miRNAs). Proc Natl Acad Sci U S A, 105: 4951–4956

    Article  CAS  PubMed  Google Scholar 

  • Luo Y C, Zhou H, Li Y, Chen J Y, Yang J H, Chen Y Q, Qu L H (2006). Rice embryogenic calli express a unique set of microRNAs, suggesting regulatory roles of microRNAs in plant post-embryogenic development. FEBS Lett, 580: 5111–5116

    Article  CAS  PubMed  Google Scholar 

  • Maere S, Heymans K, Kuiper M (2005). BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics, 21: 3448–3449

    Article  CAS  PubMed  Google Scholar 

  • Mallory A C, Bartel D P, Bartel B (2005). MicroRNA-directed regulation of Arabidopsis AUXIN RESPONSE FACTOR17 is essential for proper development and modulates expression of early auxin response genes. Plant Cell, 17: 1360–1375

    Article  CAS  PubMed  Google Scholar 

  • Mi S, Cai T, Hu Y, Chen Y, Hodges E, Ni F, Wu L, Li S, Zhou H, Long C, Chen S, Hannon G J, Qi Y (2008). Sorting of small RNAs into Arabidopsis argonaute complexes is directed by the 5’ terminal nucleotide. Cell. 133: 116–127

    Article  CAS  PubMed  Google Scholar 

  • Ouyang S, Zhu W, Hamilton J, Lin H, Campbell M, Childs K, Thibaud-Nissen F, Malek R L, Lee Y, Zheng L, Orvis J, Haas B, Wortman J, Buell C R (2007). The TIGR Rice Genome Annotation Resource: improvements and new features. Nucleic Acids Res, 35: D883–887

    Article  CAS  PubMed  Google Scholar 

  • Park W, Li J, Song R, Messing J, Chen X (2002). CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Curr Biol, 12: 1484–1495

    Article  CAS  PubMed  Google Scholar 

  • Peragine A, Yoshikawa M, Wu G, Albrecht H L, Poethig R S (2004). SGS3 and SGS2/SDE1/RDR6 are required for juvenile development and the production of trans-acting siRNAs in Arabidopsis. Genes Dev, 18: 2368–2379

    Article  CAS  PubMed  Google Scholar 

  • Reinhart B J, Weinstein E G, Rhoades M W, Bartel B, Bartel D P (2002). MicroRNAs in plants. Genes Dev, 16: 1616–1626

    Article  CAS  PubMed  Google Scholar 

  • Rhoades M W, Reinhart B J, Lim L P, Burge C B, Bartel B, Bartel D P (2002). Prediction of plant microRNA targets. Cell, 110: 513–520

    Article  CAS  PubMed  Google Scholar 

  • Rice P, Longden I, Bleasby A (2000). EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet, 16: 276–277

    Article  CAS  PubMed  Google Scholar 

  • Rubio-Somoza I, Cuperus J T, Weigel D, Carrington J C (2009). Regulation and functional specialization of small RNA-target nodes during plant development. Curr Opin Plant Biol, 12(5): 622–627

    Article  CAS  PubMed  Google Scholar 

  • Song J J, Smith S K, Hannon G J, Joshua-Tor L (2004). Crystal structure of Argonaute and its implications for RISC slicer activity. Science, 305: 1434–1437

    Article  CAS  PubMed  Google Scholar 

  • Sunkar, R., and Zhu, J.K. (2004). Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell16, 2001–2019.

    Article  CAS  PubMed  Google Scholar 

  • Sunkar R, Jagadeeswaran G (2008). In silico identification of conserved microRNAs in large number of diverse plant species. BMC Plant Biol, 8: 37

    Article  PubMed  Google Scholar 

  • Sunkar R, Girke T, Jain P K, Zhu J K (2005). Cloning and characterization of microRNAs from rice. Plant Cell, 17: 1397–1411

    Article  CAS  PubMed  Google Scholar 

  • Sunkar R, Zhou X, Zheng Y, Zhang W, Zhu J K (2008). Identification of novel and candidate miRNAs in rice by high throughput sequencing. BMC Plant Biol, 8: 25

    Article  PubMed  Google Scholar 

  • Vaucheret H (2008). Plant ARGONAUTES. Trends Plant Sci, 13: 350–358

    Article  CAS  PubMed  Google Scholar 

  • Vaucheret H, Vazquez F, Crete P, Bartel D P (2004). The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. Genes Dev, 18: 1187–1197

    Article  CAS  PubMed  Google Scholar 

  • Vazquez F, Vaucheret H, Rajagopalan R, Lepers C, Gasciolli V, Mallory A C, Hilbert J L, Bartel D P, Crete P (2004). Endogenous trans-acting siRNAs regulate the accumulation of Arabidopsis mRNAs. Mol Cell, 16: 69–79

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Pei K, Fu Y, Sun Z, Li S, Liu H, Tang K, Han B, Tao Y (2007). Genome-wide analysis of the auxin response factors (ARF) gene family in rice (Oryza sativa). Gene, 394: 13–24

    Article  CAS  PubMed  Google Scholar 

  • Wang J W, Wang L J, Mao Y B, Cai W J, Xue H W, Chen X Y (2005). Control of root cap formation by MicroRNA-targeted auxin response factors in Arabidopsis. Plant Cell, 17: 2204–2216

    Article  CAS  PubMed  Google Scholar 

  • Warthmann N, Chen H, Ossowski S, Weigel D, Herve P (2008). Highly specific gene silencing by artificial miRNAs in rice. PLoS One, 3: e1829

    Article  PubMed  Google Scholar 

  • Wu M F, Tian Q, Reed J W (2006). Arabidopsis microRNA167 controls patterns of ARF6 and ARF8 expression, and regulates both female and male reproduction. Development, 133: 4211–4218

    Article  CAS  PubMed  Google Scholar 

  • Xie K, Wu C, Xiong L (2006). Genomic organization, differential expression, and interaction of SQUAMOSA promoter-binding-like transcription factors and microRNA156 in rice. Plant Physiol, 142: 280–293

    Article  CAS  PubMed  Google Scholar 

  • Xie Z, Kasschau K D, Carrington J C (2003). Negative feedback regulation of Dicer-Like1 in Arabidopsis by microRNA-guided mRNA degradation. Curr Biol, 13: 784–789

    Article  CAS  PubMed  Google Scholar 

  • Xie Z, Allen E, Fahlgren N, Calamar A, Givan S A, Carrington J C (2005). Expression of Arabidopsis MIRNA genes. Plant Physiol, 138: 2145–2154

    Article  CAS  PubMed  Google Scholar 

  • Xue L J, Zhang J J, Xue H W (2009). Characterization and expression profiles of miRNAs in rice seeds. Nucleic Acids Res, 37: 916–930

    Article  CAS  PubMed  Google Scholar 

  • Yang J H, Han S J, Yoon E K, Lee, W S (2006). Evidence of an auxin signal pathway, microRNA167-ARF8-GH3, and its response to exogenous auxin in cultured rice cells’. Nucleic Acids Res, 34: 1892–1899

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Hu S, Wang J, Wong G K, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X, Cao M, Liu J, Sun J, Tang J, Chen Y, Huang X, Lin W, Ye C, Tong W, Cong L, Geng J, Han Y, Li L, Li W, Hu G, Li J, Liu Z, Qi Q, Li T, Wang X, Lu H, Wu T, Zhu M, Ni P, Han H, Dong W, Ren X, Feng X, Cui P, Li X, Wang H, Xu X, Zhai W, Xu Z, Zhang J, He S, Xu J, Zhang K, Zheng X, Dong J, Zeng W, Tao L, Ye J, Tan J, Chen X, He J, Liu D, Tian W, Tian C, Xia H, Bao Q, Li G, Gao H, Cao T, Zhao W, Li P, Chen W, Zhang Y, Hu J, Liu S, Yang J, Zhang G, Xiong Y, Li Z, Mao L, Zhou C, Zhu Z, Chen R, Hao B, Zheng W, Chen S, Guo W, Tao M, Zhu L, Yuan L, Yang H (2002). A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science, 296: 79–92

    Article  CAS  PubMed  Google Scholar 

  • Zhu Q H, Spriggs A, Matthew L, Fan L, Kennedy G, Gubler F, Helliwell C (2008). A diverse set of microRNAs and microRNA-like small RNAs in developing rice grains. Genome Res, 18: 1456–1465

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofeng Cao.

Additional information

Both authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, M., Gu, L., Li, P. et al. Degradome sequencing reveals endogenous small RNA targets in rice (Oryza sativa L. ssp. indica). Front. Biol. 5, 67–90 (2010). https://doi.org/10.1007/s11515-010-0007-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11515-010-0007-8

Keywords

Navigation