Skip to main content

Advertisement

Log in

Point process time–frequency analysis of dynamic respiratory patterns during meditation practice

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Respiratory sinus arrhythmia (RSA) is largely mediated by the autonomic nervous system through its modulating influence on the heart beats. We propose a robust algorithm for quantifying instantaneous RSA as applied to heart beat intervals and respiratory recordings under dynamic breathing patterns. The blood volume pressure-derived heart beat series (pulse intervals, PIs) are modeled as an inverse Gaussian point process, with the instantaneous mean PI modeled as a bivariate regression incorporating both past PIs and respiration values observed at the beats. A point process maximum likelihood algorithm is used to estimate the model parameters, and instantaneous RSA is estimated via a frequency domain transfer function evaluated at instantaneous respiratory frequency where high coherence between respiration and PIs is observed. The model is statistically validated using Kolmogorov–Smirnov goodness-of-fit analysis, as well as independence tests. The algorithm is applied to subjects engaged in meditative practice, with distinctive dynamics in the respiration patterns elicited as a result. The presented analysis confirms the ability of the algorithm to track important changes in cardiorespiratory interactions elicited during meditation, otherwise not evidenced in control resting states, reporting statistically significant increase in RSA gain as measured by our paradigm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Note that for a fair comparison across subjects, the RSA gain was normalized by the standard deviation of the corresponding RP.

References

  1. Barbieri R, Brown EN (2006) Analysis of heartbeat dynamics by point process adaptive filtering. IEEE Trans Biomed Eng 53(1):4–12

    Article  PubMed  Google Scholar 

  2. Barbieri R, Waldmann RA, Di Virgilio V, Triedman JK, Bianchi AM, Cerutti S, Saul JP (1996) Continuous quantification of baroreflex and respiratory control of heart rate by use of bivariate autoregressive techniques. Ann Noninvasive Electrocardiol 1:264–277

    Article  Google Scholar 

  3. Barbieri R, Bianchi AM, Triedman JK, Mainardi LT, Cerutti S, Saul JP (1997) Model dependency of multivariate autoregressive spectral analysis. IEEE Eng Med Bio Mag 16(5):74–85

    Article  CAS  Google Scholar 

  4. Barbieri R, Matten EC, Alabi ARA, Brown EN (2005) A point-process model of human heartbeat intervals: new definitions of heart rate and heart rate variability. Am J Physiol Heart Circ Physiol 288(1):H424–H435

    Article  CAS  Google Scholar 

  5. Baselli G, Bolis D, Cerutti S, Freschi C (1985) Autoregressive modeling and power spectral estimate of RR interval time series in arrhythmic patients. Comput Biomed Res 18(6):510–530

    Article  PubMed  CAS  Google Scholar 

  6. Berntson GG, Bigger JT, Eckberg DL, Grossman P et al (1997) Heart rate variability: origins, methods, and interpretive caveats. Psychophysiology 34(6):623–648

    Article  PubMed  CAS  Google Scholar 

  7. Blain G, Meste O, Bermon S (2005) Influences of breathing patterns on respiratory sinus arrhythmia in humans during exercise. Am J Physiol Heart Circ Physiol 288(2):H887

    Article  PubMed  CAS  Google Scholar 

  8. Brown EN, Barbieri R, Ventura V, Kass RE, Frank LM (2002) The time rescaling theorem and its application to neural spike train data analysis. Neural Comput 14(2):325–346

    Article  PubMed  Google Scholar 

  9. Chen Z, Brown E, Barbieri R (2009) Assessment of autonomic control and respiratory sinus arrhythmia using point process models of human heart beat dynamics. IEEE Trans Biomed Eng 56(7):1791–1802

    Article  PubMed  Google Scholar 

  10. Chhikara RS, Folks JL (1989) The inverse gaussian distribution: theory, methodology, and applications. Marcel Dekker, Inc. New York

  11. Denver JW, Reed SF, Porges SW (2007) Methodological issues in the quantification of respiratory sinus arrhythmia. Biol Psychol 74(2):286–294

    Article  PubMed  Google Scholar 

  12. Ditto B, Eclache M, Goldman N (2006) Short-term autonomic and cardiovascular effects of mindfulness body scan meditation. Ann Behav Med 32(3):227–234

    Article  PubMed  Google Scholar 

  13. Eckberg DL (1983) Human sinus arrhythmia as an index of vagal cardiac outflow. J Appl Physiol 54:961–966

    PubMed  CAS  Google Scholar 

  14. Eckberg DL (2003) The human respiratory gate. J Physiol 548(2):339–352

    PubMed  CAS  Google Scholar 

  15. Elstad M, Toska K, Chon KH, Raeder EA, Cohen RJ (2001) Respiratory sinus arrhythmia: opposite effects on systolic and mean arterial pressure in supine humans. J Physiol 536(1):251–259

    Article  PubMed  CAS  Google Scholar 

  16. Faes L, Porta A, Cucino R, Cerutti S, Antolini R, Nollo G (2004) Causal transfer function analysis to describe closed loop interactions between cardiovascular and cardiorespiratory variability signals. Biol Cybern 90(6):390–399

    Article  PubMed  CAS  Google Scholar 

  17. Garland EL, Gaylord SA, Boettiger CA, Howard MO (2010) Mindfulness training modifies cognitive, affective, and physiological mechanisms implicated in alcohol dependence: results of a randomized controlled pilot trial. J Psychoactive Drugs 42(2):177–192

    Article  PubMed  Google Scholar 

  18. Gilad O, Swenne CA, Davrath LR, Akselrod S (2005) Phase-averaged characterization of respiratory sinus arrhythmia pattern. Am J Physiol Heart Circul Physiol 288(2):H504

    Article  CAS  Google Scholar 

  19. Goedhart AD, Van Der Sluis S, Houtveen JH, Willemsen G, De Geus EJC (2007) Comparison of time and frequency domain measures of RSA in ambulatory recordings. Psychophysiology 44(2):203–215

    Article  PubMed  Google Scholar 

  20. Grossman P, Kollai M (1993) Respiratory sinus arrhythmia, cardiac vagal tone, and respiration: within- and between-individual relations. Psychophysiology 30(5):486–495

    Article  PubMed  CAS  Google Scholar 

  21. Grossman P, Svebak S (1987) Respiratory sinus arrhythmia as an index of parasympathetic cardiac control during active coping. Psychophysiology 24(2):228–235

    Article  PubMed  CAS  Google Scholar 

  22. Grossman P, Taylor EW (2007) Toward understanding respiratory sinus arrhythmia: relations to cardiac vagal tone, evolution and biobehavioral functions. Biol Psychol 74(2):263–285

    Article  PubMed  Google Scholar 

  23. Grossman P, Karemaker J, Wieling W (1991) Prediction of tonic parasympathetic cardiac control using respiratory sinus arrhythmia: the need for respiratory control. Psychophysiology 28(2):201–216

    Article  PubMed  CAS  Google Scholar 

  24. Heitmann A, Huebner T, Schroeder R, Perz S, Voss A (2011) Multivariate short-term heart rate variability: a pre-diagnostic tool for screening heart disease. Med Biol Eng Comput 49(1):41–50

    Google Scholar 

  25. Hirsch JA, Bishop B (1981) Respiratory sinus arrhythmia in humans: how breathing pattern modulates heart rate. Am J Physiol 241:H620–H629

    PubMed  CAS  Google Scholar 

  26. Jo JA, Blasi A, Valladares E, Juarez R, Baydur A, Khoo MCK (2005) Determinants of heart rate variability in obstructive sleep apnea syndrome during wakefulness and sleep. Am J Physiol Heart Circul Physiol 288(3):H1103

    Article  CAS  Google Scholar 

  27. Kabat-Zinn J (1990) Full catastrophe living: using the wisdom of your body and mind to face stress, pain, and illness. Delta Trade Paperbacks. ISBN 9780385303125. http://books.google.com.au/books?id=i4AedPJKtYYC

  28. Katona PG, Jih F (1975) Respiratory sinus arrhythmia: noninvasive measure of parasympathetic cardiac control. J Appl Physiol 39(5):801

    PubMed  CAS  Google Scholar 

  29. Kluge KA, Harper RM, Schechtman VL, Wilson AJ, Hoffman HJ, Southall DP (1988) Spectral analysis assessment of respiratory sinus arrhythmia in normal infants and infants who subsequently died of sudden infant death syndrome. Pediatr Res 24(6):677–682

    Article  PubMed  CAS  Google Scholar 

  30. Lazar SW, Kerr CE, Wasserman RH, Gray JR, Greve DN, Treadway MT, McGarvey M, Quinn BT, Dusek JA, Benson H, L RS, I MC, Fischl B (2005) Meditation experience is associated with increased cortical thickness. Neuroreport 16(17):1893–1897

    Article  PubMed  Google Scholar 

  31. Lehrer P, Sasaki Y, Saito Y (1999) Zazen and cardiac variability. Psychosom Med 61(6):812–821

    PubMed  CAS  Google Scholar 

  32. Loader C (1999) Local regression and likelihood. Springer, Berlin

  33. Malik M, Bigger JT, Camm AJ, Kleiger RE, Malliani A, Moss AJ, Schwartz PJ (1996) Heart rate variability standards of measurement, physiological interpretation, and clinical use. Am Heart Assoc Circ 93(5):1043–1065

    Google Scholar 

  34. Melillo P, Fusco R, Sansone M, Bracale M, Pecchia L (2011) Discrimination power of long-term heart rate variability measures for chronic heart failure detection. Med Biol Eng Comput 49:67–74

    Article  PubMed  Google Scholar 

  35. Mukkamala R, Mathias JM, Mullen TJ, Cohen RJ, Freeman R (1999) System identification of closed-loop cardiovascular control mechanisms: diabetic autonomic neuropathy. Am J Physiol Regul Integr Comp Physiol 276(3):R905

    CAS  Google Scholar 

  36. Mulder LJM (1992) Measurement and analysis methods of heart rate and respiration for use in applied environments. Biol Psychol 34(2–3):205–236

    Article  PubMed  CAS  Google Scholar 

  37. Orini M, Bail ó n R, Enk R, Koelsch S, Mainardi L, Laguna P (2010) A method for continuously assessing the autonomic response to music-induced emotions through HRV analysis. Med Biol Eng Comput 48(5):423–433

    Article  PubMed  Google Scholar 

  38. Ortner CNM, Kilner S, Zelazo PD (2007) Mindfulness meditation and reduced emotional interference on a cognitive task. Motiv Emot 31(4):271–283

    Article  Google Scholar 

  39. Peng CK, Henry IC, Mietus JE, Hausdorff JM, Khalsa G, Benson H, Goldberger AL (2004) Heart rate dynamics during three forms of meditation. Int J Cardiol 95(1):19–27

    Article  Google Scholar 

  40. Peressutti C, Martín-González J, M García-Manso J, Mesa D (2010) Heart rate dynamics in different levels of zen meditation. Int J Cardiol 145(1):142–146

  41. Piskorski J, Guzik P (2011) Asymmetric properties of long-term and total heart rate variability. Med Biol Eng Comput 49(11):1289–1297

    Google Scholar 

  42. Ross SM (2007) Introduction to probability models, 9th edn. Academic Press, Massachusetts

  43. Saul JP, Cohen RJ (1994) Respiratory sinus arrhythmia. In: Vagal control of the heart: experimental basis and clinical implications. Futura Publishing Co. Inc., Armonk, pp 511–536

  44. Saul JP, Berger RD, Chen MH, Cohen RJ (1989) Transfer function analysis of autonomic regulation. II. Respiratory sinus arrhythmia. Am J Physiol Heart Circ Physiol 256(1):H153–H161

    CAS  Google Scholar 

  45. Sin PYW, Galletly DC, Tzeng YC (2010) Influence of breathing frequency on the pattern of respiratory sinus arrhythmia and blood pressure: old questions revisited. Am J Physiol Heart Circ Physiol 298(5):H1588

    Article  CAS  Google Scholar 

  46. Thomas RJ, Mietus JE, Peng CK, Goldberger AL (2005) An electrocardiogram-based technique to assess cardiopulmonary coupling during sleep. Sleep 28(9):1151–1161

    PubMed  Google Scholar 

  47. Tibshirani R, Hastie T (1987) Local likelihood estimation. J Am Stat Assoc 82(398):559–567

    Article  Google Scholar 

  48. Voss A, Schulz S, Baer KJ (2010) Linear and nonlinear analysis of autonomic regulation of heart rate variability in healthy first-degree relatives of patients with schizophrenia, pp 5395–5398

  49. Womack BF (1971) The analysis of respiratory sinus arrhythmia using spectral analysis and digital filtering. IEEE Trans Biomed Eng 18:399–409

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health (NIH) under Grant R01-HL084502, Grant R01-DA015644, Grant DP1-OD003646, Grant K01-AT00694-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riccardo Barbieri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kodituwakku, S., Lazar, S.W., Indic, P. et al. Point process time–frequency analysis of dynamic respiratory patterns during meditation practice. Med Biol Eng Comput 50, 261–275 (2012). https://doi.org/10.1007/s11517-012-0866-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-012-0866-z

Keywords

Navigation