Skip to main content
Log in

Optical tomography of breast cancer—monitoring response to primary medical therapy

  • Review
  • Published:
Targeted Oncology Aims and scope Submit manuscript

Abstract

Diffuse optical imaging and spectroscopy use near-infrared light to derive physiological parameters such as total hemoglobin concentration and tissue oxygen saturation. Numerous clinical studies have been carried out, either using stand-alone optical methods or in combination with alternative imaging techniques. Studies have demonstrated that diffuse optical imaging and spectroscopy are able to distinguish malignant lesions from benign tissues. Breast cancer is characterized by an increase in total hemoglobin and a decrease in tissue oxygen saturation. Benign lesions such as cysts and fibroadenomas have also been studied, with less conclusive results. As diffuse optical imaging and spectroscopy do not use ionizing radiation, they are a suitable technique for performing repeated scans, such as for monitoring treatment response. This provides a unique functional and dynamic imaging method that reflects changes in tumor angiogenesis and hypoxia. When breast cancers are treated with primary medical therapy, this can result in a selective antiangiogenic effect that could help predict response to treatment earlier than by assessment of tumor size. Diffuse optical imaging and spectroscopy have been used to scan women at several points prior to and during their neoadjuvant chemotherapy treatment, with images and data showing physiological changes in the tumor in response to treatment. In the women who respond to therapy, the total hemoglobin concentration decreases and the level of oxygenation increases in the tumor over the course of the treatment. It is possible to predict a response to treatment as little as 4 days after the start of treatment. These findings demonstrate that optical techniques could play a role in the monitoring of changes in angiogenesis, apoptosis and hypoxia due to neoadjuvant chemotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cerussi AE, Berger AJ, Bevilacqua F, Shah N, Jakubowski D, Butler J, Holcombe RF, Tromberg BJ (2001) Sources of absorption and scattering contrast for near infrared optical mammography. Acad Radiol 8(3):211–218

    Article  PubMed  CAS  Google Scholar 

  2. Colak SB, van der Mark MB, Hooft GW, Hoogenraad JH, van der Linden ES, Kuijpers FA (1999) Clinical optical tomography and NIR spectroscopy for breast cancer detection. IEEE Quantum Electronics 5(4):1143–1158

    Article  CAS  Google Scholar 

  3. Peters VG, Wyman DR, Patterson MS, Frank GL (1990) Optical properties of normal and diseased human breast tissue in the visible and near infrared. Phys Med Biol 35(8):1317–1334

    Article  PubMed  CAS  Google Scholar 

  4. Cheng X, Mao J, Bush R, Kopans DB, Moore RH, Chorlton M (2003) Breast cancer detection by mapping hemoglobin concentration and oxygen saturation. Appl Opt 42(31):6412–6421

    Article  PubMed  CAS  Google Scholar 

  5. Jiang S, Pogue BW, McBride TO, Paulsen KD (2003) Quantitative analysis of near-infrared tomography: sensitivity to the tissue-simulating precalibration phantom. J Biomed Opt 8(2):308–315

    Article  PubMed  Google Scholar 

  6. Srinivasan S, Pogue BW, Jiang S, Dehghani H, Kogel C, Soho S, Gibson JJ, Tosteson TD, Poplack SP, Paulsen KD (2003) Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared tomography. PNAS 100(21):12349–12354

    Article  PubMed  CAS  Google Scholar 

  7. Boucher Y, Leunig M, Jain RK (1996) Tumor angiogenesis and interstitial hypertension. Cancer Res 56:4264–4266

    PubMed  CAS  Google Scholar 

  8. McDonald DM, Baluk P (2002) Significance of blood vessel leakiness in cancer. Cancer Res 6:5381–5385

    Google Scholar 

  9. Vaupel P, Kallinowski F, Okunieff P (1989) Blood flow, oxygen and nutrient supply, and metabolic environment of human tumors: a review. Cancer Res 49(23):6449–6465

    PubMed  CAS  Google Scholar 

  10. Boas DA, Brooks DH, Miller EL, DiMarzio CA, Kilmer M, Gaudette RJ, Zhang Q (2001) Imaging the body with diffuse optical tomography. IEEE Signal Proc Mag 18(6):57–75

    Article  Google Scholar 

  11. Zhang Q, Brukilacchio TJ, Li A, Stott JJ, Chaves T, Hillman E, Wu T, Chorlton M, Rafferty E, Moore RH, Kopans DB, Boas DA (2005) Coregistered tomographic x-ray and optical breast imaging: initial results. J Biomed Opt 10(2):024033

    Article  PubMed  Google Scholar 

  12. Li A, Miller EL, Kilmer M, Brukilacchio TJ, Chaves T, Stott JJ, Zhang Q, Wu T, Chorlton M, Moore RH, Kopans DB, Boas DA (2003) Tomographic optical breast imaging guided by three-dimensional mammography. Appl Opt 42(25):5181–5190

    Article  PubMed  Google Scholar 

  13. Ntziachristos V, Yodh AG, Schnall M, Chance B (2002) MRI-guided diffuse optical spectroscopy of malignant and benign breast lesions. Neoplasia 4(4):347–354

    Article  PubMed  Google Scholar 

  14. Brooksby B, Jiang S, Dehghani H, Pogue BW, Paulsen KD, Kogel C, Doyley M, Weaver JB, Poplack SP (2004) Magnetic resonance-guided near-infrared tomography of the breast. Rev Sci Instrum 75(12):5262–5270

    Article  CAS  Google Scholar 

  15. Chen NG, Huang M, Xia H, Piao D, Cronin E, Zhu Q (2004) Portable near-infrared diffusive light imager for breast cancer detection. J Biomed Opt 9(4):504–510

    Article  PubMed  Google Scholar 

  16. Zhu Q, Tannenbaum S, Hegde P, Kane M, Xu C, Kurtzman SH (2008) Noninvasive monitoring of breast cancer during neoadjuvant chemotherapy using optical tomography with ultrasound localization. Neoplasia 10(10):1028–1040

    PubMed  CAS  Google Scholar 

  17. Li C, Zhao H, Anderson B, Jiang H (2006) Multispectral breast imaging using a ten-wavelength, 64 × 64 source/detector channels silicone photodiode-based diffuse optical tomography system. Med Phys 33(3):627–636

    Article  PubMed  Google Scholar 

  18. Young Y, Shnall M, Zhao S, Orel S, Xie C, Nioka S, Chance B, Solin A (1997) Optical Imaging of breast tumor by means of continuous waves. Adv Exp Med Biol 441:227–232

    Google Scholar 

  19. Arridge SR, Lionheart WRB (1998) Nonuniqueness in diffusion-based optical tomography. Opt Lett 23:882–884

    Article  PubMed  CAS  Google Scholar 

  20. Culver JP, Choe R, Holboke MJ, Zubkov L, Durduran T, Slemp A, Ntziachristos V, Chance B, Yodh AG (2003) Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: Evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging. Med Phys 30(2):235–247

    Article  PubMed  CAS  Google Scholar 

  21. Pogue BW, Testorf M, McBride T, Osterberg U, Paulsen K (1997) Instrumentation and design of a frequency-domain diffuse optical tomography imager for breast cancer detection. Opt Express 1(13):391–403

    Article  PubMed  CAS  Google Scholar 

  22. Grosenick D, Wabnitz H, Moesta KT, Mucke J, Moller M, Stroszczynski C, Stobel J, Wassermann B, Schlag PM, Rinneberg H (2004) Concentration and oxygen saturation of hemoglobin of 50 breast tumors determined by time-domain optical mammography. Phys Med Biol 49(7):1165–1181

    Article  PubMed  Google Scholar 

  23. Yates TD, Hebden JC, Gibson AP, Everdell NL, Arridge SR, Douek M (2005) Optical tomography of the breast using a multi-channel time-resolved imager. Phys Med Biol 50(11):2503–2517

    Article  PubMed  Google Scholar 

  24. Schmidt FEW, Fry ME, Hillman EMC, Hebden JC, Delpy DT (1998) A 32-channel time-resolved instrument for medical optical tomography. Rev Sci Instrum 71(1):256–265

    Article  Google Scholar 

  25. Pogue BW, Jiang S, Dehghani H, Kogel C, Soho S, Srinivasan S, Song X, Tosteson TD, Poplack SB, Paulsen KD (2004) Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes. J Biomed Opt 9(3):541–552

    Article  PubMed  CAS  Google Scholar 

  26. Yates TD, Hebden JC, Gibson AP, Enfield LC, Everdell NL, Arridge SR, Delpy DT (2005) Time-resolved optical mammography using a liquid coupled interface. J Biomed Opt 10(5):054011

    Article  PubMed  Google Scholar 

  27. Enfield LC, Gibson AP, Everdell NL, Delpy DT, Schweiger M, Arridge SR, Richardson C, Keshtgar M, Douek M, Hebden JC (2007) Three-dimensional time-resolved optical mammography of the uncompressed breast. Appl Opt 46(17):3628–3638

    Article  PubMed  Google Scholar 

  28. van der Ven S, Elias S, Wiethoff A, van der Voort M, Leproux A, Nielsen T, Brendel B, Bakker L, van der Mark M, Mali W, Luijten P (2008) Diffuse optical tomography of the breast: initial validation in benign cysts. Mol Imaging Biol 11(1):64–70

    PubMed  Google Scholar 

  29. Pogue BW, Patterson MS (2006) Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry. J Biomed Opt 11(4):041102

    Article  PubMed  Google Scholar 

  30. Choe R, Konecky SD, Corlu A, Lee K, Durduran T, Busch DR, Pathak S, Czerniecki BJ, Tchou J, Fraker DL, DeMichele A, Chance B, Arridge SR, Schweiger M, Culver JP, Schnall MD, Putt ME, Rosen MA, Yodh AG (2009) Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography. J Biomed Opt 14(2):024020

    Article  PubMed  CAS  Google Scholar 

  31. Grosenick D, Moesta KT, Möller M, Mucke J, Wabnitz H, Gabauer B, Stroszczynski C, Wassermann B, Schlag PM, Rinneberg H (2005) Time-domain scanning optical mammography: I. Recording and assessment of mammograms of 154 patients. Phys Med Biol 50(11):2429–2449

    Article  PubMed  Google Scholar 

  32. Grosenick D, Wabnitz H, Moesta KT, Mucke J, Schlag PM, Rinneberg H (2005) Time-domain scanning optical mammography: II. Optical properties and tissue parameters of 87 carcinomas. Phys Med Biol 50(11):2451–2468

    Article  PubMed  Google Scholar 

  33. Taroni P, Torricelli A, Spinelli L, Pifferi A, Arpaia F, Danesini G, Cubeddu R (2005) Time-resolved optical mammography between 637 and 985 nm: clinical study on the detection and identification of breast lesions. Phys Med Biol 50(11):2469–2488

    Article  PubMed  Google Scholar 

  34. Spinelli L, Torricelli A, Pifferi A, Taroni P, Danesini G, Cubeddu R (2005) Characterization of female breast lesions from multi-wavelength time-resolved optical mammography. Phys Med Biol 50(11):2489–2502

    Article  PubMed  Google Scholar 

  35. Durduran T, Choe R, Yu G, Zhou C, Tchou JC, Czerniecki BJ, Yodh AG (2005) Diffuse optical measurement of blood flow in breast tumors. Opt Lett 30(21):2915–2917

    Article  PubMed  Google Scholar 

  36. Jiang SD, Pogue BW, Paulsen KD, Kogel C, Poplack SP (2003) In vivo near-infrared spectral detection of pressure-induced changes in breast tissue. Opt Lett 28:1212–1214

    Article  PubMed  Google Scholar 

  37. Carp SA, Kauffman T, Fang Q, Rafferty E, Moore R, Kopans D, Boas D (2006) Compression-induced changes in the physiological state of the breast as observed through frequency domain photon migration measurements. J Biomed Opt 11(6):064016

    Article  PubMed  CAS  Google Scholar 

  38. Boverman G, Fang Q, Carp SA, Miller EL, Brooks DH, Selb J, Moore RH, Kopans DB, Boas DA (2007) Spatio-temporal imaging of the hemoglobin in the compressed breast with diffuse optical tomography. Phys Med Biol 52:3619–3641

    Article  PubMed  CAS  Google Scholar 

  39. Schmitz CH, Klemer DP, Hardin R, Katz MS, Pei Y, Graber HL, Levin MB, Levina RD, Franco NA, Solomon WB, Barbour RL (2005) Design and implementation of dynamic near-infrared optical tomograpic imaging instrumentation for simultaneous dual-breast measurements. Appl Opt 44(11):2140–2153

    Article  PubMed  Google Scholar 

  40. Jöbsis-VanderVliet FF, Jobsis PD (1999) Biochemical and physiological basis of medical near-infrared spectroscopy. J Biomed Opt 4(3):397–402

    Article  Google Scholar 

  41. Shah N, Cerussi A, Eker C, Espinoza J, Butler J, Fishkin J, Hornung R, Tromberg B (2001) Noninvasive functional optical spectroscopy of human breast tissue. Proc Nat Acad Sci 98(8):4420–4425

    Article  PubMed  CAS  Google Scholar 

  42. Tromberg BJ, Cerussi A, Shah N, Compton M, Durkin A, Hsiang D, Butler J, Mehta R (2005) Diffuse optics in breast cancer: detecting tumors in pre-menopausal women and monitoring neoadjuvant chemotherapy. Breast Cancer Res 7(6):279–285

    Article  PubMed  Google Scholar 

  43. Cubeddu R, D'Andrea C, Pifferi A, Taroni P, Torricelli A, Valentini G (2000) Effects of the menstrual cycle on the red and near-infrared optical properties of the human breast. Photochem Photobiol 72(3):383–391

    Article  PubMed  CAS  Google Scholar 

  44. Thomsen S, Tatman D (1998) Physiological and pathological factors of human breast disease that can influence optical diagnosis. Ann NY Acad Sci 838:171–193

    Article  PubMed  CAS  Google Scholar 

  45. Leff DR, Warren O, Enfield LC, Gibson AP, Athanasiou T, Pattern DK, Hebden JC, Yang GZ, Darzi A (2008) Diffuse optical imaging of the healthy and diseased breast—a systematic review. Breast Cancer Res Treat 108:9–22

    Article  PubMed  Google Scholar 

  46. Cerussi AE, Berger AJ, Bevilacqua F, Shah N, Jakubowski D, Butler J, Holcombe RF, Tromberg BJ (2001) Sources of absorption and scattering contrast for near-infrared optical mammography. Acad Radiol 8(3):211–218

    Article  PubMed  CAS  Google Scholar 

  47. Dehghani H, Pogue BW, Poplack SP, Paulsen KD (2003) Multi-wavelength three-dimensional near-infrared tomography of the breast: initial simulation, phantom and clinical results. Appl Opt 42(1):135–145

    Article  PubMed  Google Scholar 

  48. Pogue BW, Jiang S, Song X, Srinivasan S, Dehghani H, Paulsen KD, Tosteson TD, Kogel C, Soho S, Poplack SP (2004) Near-infrared scattering spectrum differences between benign and malignant breast tumors measured in vivo with diffuse tomography. Technical digest of OSA Biomedical Optics Topical Meetings. Optical Society of America, Washington DC 2004

    Google Scholar 

  49. Li C, Grobmyer SR, Massol N, ZL ZQ, Chen L, Fajardo LL, Jiang H (2008) Non-invasive in vivo tomographic optical imaging of cellular morphology in the breast: Possible convergence of microscopic pathology and macroscopic radiology. Med Phys 35(6):2493–2501

    Article  PubMed  Google Scholar 

  50. Gu X, Zhang Q, Bartlett M, Schutz L, Fajardo LL, Jiang H (2004) Differentiation of cysts from solid tumors in the breast with diffuse optical tomography. Acad Radiol Jan 11(1):53–60

    Article  Google Scholar 

  51. Cerussi AE, Shah NS, Hsiang D, Durkin A, Butler JA, Tromberg BJ (2006) In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy. J Biomed Opt 11(4):044005

    Article  PubMed  Google Scholar 

  52. Konecky SD, Choe R, Corlu A, Lee K, Wiener R, Srinivas SM, Saffer JR, Freifelder R, Karp JS, Hajjioui N, Azar F, Yodh AG (2008) Comparison of diffuse optical tomography of human breast with whole-body and breast-only positron emission tomography. Med Phys 35(2):446–455

    Article  PubMed  Google Scholar 

  53. Choe R, Corlu A, Lee K, Durduran T, Konecky SD, Grosicka-Koptyra M, Arridge SR, Czernieki BJ, Fraker DL, DeMichele A, Chance B, Rosen MA, Yodh AG (2005) Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: a case study with comparison to MRI. Med Phys 32(4):1128–1139

    Article  PubMed  Google Scholar 

  54. Fang Q, Carp SA, Selb J, Boverman G, Zhang Q, Kopans DB, Moore RH, Miller EL, Brooks DH, Boas DA (2009) Combined optical imaging and mammography of the healthy breast: optical contrast derived from breast structure and compression. IEEE Trans Med Imaging 28(1):30–42

    Article  PubMed  CAS  Google Scholar 

  55. Brooksby B, Jiang S, Dehghani H, Pogue BW, Paulsen KD, Kogel C, Doyley M, Weaver JB, Poplack SP (2004) Magnetic resonance-guided near-infrared tomography of the breast. Rev Sci Instrum 75(12):5262–5270

    Article  CAS  Google Scholar 

  56. Brooksby B, Jiang S, Dehghani H, Pogue BW, Paulsen KD, Weaver J, Kogel C, Poplack SP (2005) Combining near-infrared tomography and magnetic resonance imaging to study in vivo breast tissue: implementation of a Laplacian-type regularization to incorporate magnetic resonance structure. J Biomed Opt 10(5):051504

    Article  PubMed  Google Scholar 

  57. Carpenter CM, Pogue BW, Jiang S, Dehghani H, Wang X, Paulsen KD, Wells WA, Forero J, Kogel C, Weaver JB, Poplack SP, Kaufman PA (2007) Image-guided optical spectroscopy provides molecular-specific information in vivo: MRI-guided spectroscopy of breast cancer hemoglobin, water, and scatterer size. Opt Lett 32(8):933–935

    Article  PubMed  Google Scholar 

  58. Carpenter CM, Srinivasan S, Pogue BW, Paulsen KD (2008) Methodology development for three-dimensional MR-guided near infrared spectroscopy of breast tumors. Opt Express 16(22):17903–17914

    Article  PubMed  CAS  Google Scholar 

  59. Zhu Q, Huang M, Chen NG, Zarfos K, Jagjivan B, Kane M, Hedge P, Scott H, Kurtzman HS (2003) Ultrasound-guided optical tomographic imaging of malignant and benign breast lesions: initial clinical results of 19 cases. Neoplasia 5(5):379–388

    PubMed  Google Scholar 

  60. Wang JZ, Liang X, Zhang Q, Fajardo LL, Jiang H (2008) Automated breast cancer classification using near-infrared optical tomographic images. J Biomed Opt 13(4):044001

    Article  PubMed  Google Scholar 

  61. Fournier LS, Vanel D, Athanasiou A, Gatzemeier W, Masuykov IV, Padhani AR, Dromain C, Galetti K, Sigal R, Costa A, Balleyguier C (2008) Dynamic optical breast imaging: a novel technique to detect and characterize tumor vessels. Eur J Radiol 69(1):43–49

    Article  PubMed  Google Scholar 

  62. Chance B, Nioka S, Zhang J, Conant EF, Hwang E, Briest S, Orel SG, Schnall MD, Czerniecki BJ (2005) Breast cancer detection based on incremental biochemical and physiological properties of breast cancer: a six-year, two-site study. Acad Radiol 12(8):925–933

    Article  PubMed  Google Scholar 

  63. Poplack SP, Tosteson TD, Wells WA, Pogue BW, Meany PM, Hartov A, Kogel CA, Soho SK, Gibson JJ, Paulsen KD (2007) Electromagnetic breast imaging: results in a pilot study in women with abnormal mammograms. Radiology 243(2):350–359

    Article  PubMed  Google Scholar 

  64. Enfield LC, Gibson AP, Everdell NL, Hebden JC, Arridge SR, Sharma A, Sainsbury RS, Douek M, Keshtgar MRS (2008) Sensitivity and specificity of 3D optical mammography. Technical digest of OSA Biomedical Optics Topical Meetings. Optical Society of America, Washington DC 2008

    Google Scholar 

  65. Wang B, Povoski SP, Cao X, Sun D, Xu RX (2008) Dynamic schema for near infrared detection of pressure-induced changes in solid tumors. App Opt 47(16):3053–3063

    Article  CAS  Google Scholar 

  66. Morris N, Hebden JC, Bland TD, Balmer B (2003) Role of patient feedback in the design and implementation of clinical trials of optical tomography of the breast. Proc SPIE 5138:12–22

    Article  Google Scholar 

  67. Armstrong V, Morris N (2009) Boundary setting in breast cancer research: a study of the experience of women volunteer research subjects. In press

  68. Shah NS, Cerussi AE, Gordon D, Durkin A, Hill B, Compton M, Tromberg BJ (2006) Integration of diffuse optical technology into clinical settings for breast health applications. Technical digest of OSA Biomedical Optics Topical Meetings. Optical Society of America, Washington DC 2006

    Google Scholar 

  69. Hebden JC, Yates TD, Gibson A, Everdell N, Arridge SR, Chicken DW, Douek M, Keshtgar MRS (2005) Monitoring recovery after laser surgery of the breast with optical tomography: a case study. App Opt 44(10):1898–1904

    Article  Google Scholar 

  70. Yates TD (2005) Time-resolved optical tomography for the detection and specification of breast disease. University of London. Thesis.

  71. Pogue BW, Davis SC, Song X, Brooksby BA, Dehghani H, Paulsen KD (2006) Image analysis methods for diffuse optical tomography. J Biomed Opt 11:033001

    Article  Google Scholar 

  72. Franceschini MA, Moesta KT, Fantini S, Gaida G, Gratton E, Helge JH, Mantulin WW, Marcel Seeber M, Schlag PM, Kaschke M (1997) Frequency-domain techniques enhance optical mammography: initial clinical results. PNAS 94(12):6468–6473

    Article  PubMed  CAS  Google Scholar 

  73. van der Hage JH, van de Velde CC, Mieong SJSD (2009) Preoperative chemotherapy for women with operable breast cancer (review). The Cochrane Collaboration. (Wiley).

  74. Hutcheon AW, Heys SD, Sarkar TK, the Aberdeen Breast Group (2003) Neoadjuvant docetaxel in locally advanced breast cancer. Breast Cancer Res Treat 79(Suppl 1):S19–S24

    Article  PubMed  CAS  Google Scholar 

  75. Goldhirsch A, Glick JH, Gelber RD, Coates AS, Senn HJ (2001) Meeting highlights: International Consensus Panel on the Treatment of Primary Breast Cancer-Seventh International Conference on Adjuvant Therapy of Primary Breast Cancer. J Clin Oncol 19:3817–3827

    PubMed  CAS  Google Scholar 

  76. Fisher B, Bryant J, Wolmark N, Mamounas E, Brown A, Fisher ER, Wickerman DL, Begovic M, DeCillis A, Robidoux A, Margolese RG, Cruz AB, Heohn JL, Less AW, Dimitrov NV, Bear HD (1998) Effect of preoperative chemotherapy on the outcome of women with operable breast cancer. J Clin Oncol 16:2672–2685

    PubMed  CAS  Google Scholar 

  77. Yeh E, Slanetz P, Kopans DB, Rafferty E, Georgian-Smith D, Moy L, Halpern E, Moore R, Kuter I, Taghian A (2005) Prospective comparison of mammography, sonography, and MRI in patients undergoing neoadjuvant chemotherapy for palpable breast cancer. AJR 184:868–877

    PubMed  Google Scholar 

  78. Manton DJ, Chaturvedi A, Hubbard A, Lind MJ, Lowry M, Maraveyas A, Pickles MD, Tozer DJ, Turnbull LW (2006) Chemotherapy in breast cancer: early response prediction with quantitative MR imaging and spectroscopy. Brit J Cancer 94:427–435

    Article  PubMed  CAS  Google Scholar 

  79. Makris A, Powles TJ, Kakolyris S, Dowsett M, Ashley SE, Harris AL (1999) Reduction in angiogenesis after neoadjuvant chemoendocrine therapy in patients with operable breast carcinoma. Cancer 85(9):1996–2000

    PubMed  CAS  Google Scholar 

  80. Folkman J (2006) Angiogenesis. Annu Rev Med 57(1):1–18

    Article  PubMed  CAS  Google Scholar 

  81. Pogue BW, Poplack SP, McBride TO, Wells WA, Osterman KS, Osterberg UL, Paulsen KD (2001) Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: Pilot results in the breast. Radiol 218(1):261–266

    CAS  Google Scholar 

  82. Zhu Q, Kurtzma SH, Hedge Om Tannenbaum S, Kane M, Huang M, Chen NG, Jagjivan B, Zarfos K (2005) Utilizing optical tomography with ultrasound localization to image heterogeneous hemoglobin distribution in large breast cancers. Neoplasia 7(3):263–270

    Article  PubMed  Google Scholar 

  83. Kuhl CK (2000) MRI of breast tumors. Eur Radiol 10(1):46–58

    Article  PubMed  CAS  Google Scholar 

  84. Vaupel P, Briest S, Hockel M (2002) Hypoxia in breast cancer: pathogenesis, characterization and biological/ therapeutic implications. WMW 152:334–342

    Article  PubMed  CAS  Google Scholar 

  85. Bergers G, Benjamin LE (2002) Tumorigenesis and the angiogenic switch. Nat Rev Canc 3:401–410

    Article  CAS  Google Scholar 

  86. Vaupel P, Schlenger K, Knoop C, Hockel M (1991) Oxygenation of human tumors: evaluation of tissue oxygen distribution in breast cancers by computerized O2 tension measurements. Cancer Res 51(12):3316–3322

    PubMed  CAS  Google Scholar 

  87. Srinivasan S, Pogue BW, Carpenter C, Shudong J, Wells WA, Poplack SP, Kaufman PA, Paulsen KD (2007) Developments in quantitative oxygen-saturation imaging of breast tissue in vivo using multispectral near-infrared tomography. ARS 9(8):1143–1155

    CAS  Google Scholar 

  88. Cleator S, Parton M, Dowsett M (2002) The biology of neoadjuvant chemotherapy for breast cancer. Endocr-relat Cancer 9(3):183–195

    Article  PubMed  CAS  Google Scholar 

  89. Jakubowksi DB, Cerussi AE, Bevilacqua F, Shah N, Hsiang D, Butler J, Tromberg BJ (2005) Monitoring neoadjuvant chemotherapy in breast cancer using quantitative diffuse optical spectroscopy: a case study. J Biomed Opt 9(1):230–238

    Article  Google Scholar 

  90. Shah NS, Gibbs J, Wolverton D, Cerussi A, Hylton N, Tromberg BJ (2005) Combined diffuse optical spectroscopy and contrast-enhanced magnetic resonance imaging for monitoring breast cancer neoadjuvant chemotherapy: a case study. J Biomed Opt 10(5):051503

    Article  PubMed  Google Scholar 

  91. Tromberg BJ, Cerussi A, Shah N, Compton M, Durkin A, Hsiang D, Butler J, Mehta R (2005) Diffuse optics in breast cancer: detecting tumors in pre-menopausal women and monitoring neoadjuvant chemotherapy. Breast Cancer Res 7(6):279–285

    Article  PubMed  Google Scholar 

  92. Zhou C, Choe R, Shah N, Durduran T, Yu G, Durkin A, Hsiang D, Mehta R, Butler J, Cerussi A, Tromberg BJ, Yodh AG (2007) Diffuse optical monitoring of blood flow and oxygenation in human breast cancer during early stages of neoadjuvant chemotherapy. J Biomed Opt 12(5):051903

    Article  PubMed  CAS  Google Scholar 

  93. Cerussi A, Hsiang D, Shah N, Mehta R, Durkin A, Butler J, Tromberg BJ (2007) Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy. PNAS 104(10):4014–4019

    Article  PubMed  CAS  Google Scholar 

  94. Tromberg BJ, Pogue BW, Paulsen KD, Yodh AG, Boas DA, Cerussi AE (2008) Assessing the future of diffuse optical imaging technologies for breast cancer management. Med Phys 35(6):2443–2451

    Article  PubMed  Google Scholar 

  95. Jiang S, Pogue BW, Carpenter CM, Poplack SP, Wells WA, Kogel CA, Forero J, Muffly LS, Schwartz GN, Paulsen KD, Kaufman PA (2009) Evaluation of breast tumor response to neoadjuvant chemotherapy with diffuse optical spectroscopic tomography: case studies of tumor region-of-interest changes. Radiology 252(2):330–331

    Article  Google Scholar 

  96. Ferrini R, Mannino E, Ramsdell E, Hill L (1996) Screening mammography for breast cancer: American College of Preventive Medicine Practice Policy Statement. Am J Prev Med 12(5):340–41

    PubMed  CAS  Google Scholar 

  97. Ah-See M-LW, Makris A, Tayloer NJ, Harrison M, Richman PI, Burcombe RJ, Stirling JJ, d’Arcy JA, Collins DJ, Pittam MR, Ravichandran D, Padhani AR (2008) Early changes in functional dynamic magnetic resonance imaging predict for pathological response to neoadjuvant chemotherapy in primary breast cancer. Clin Cancer Res 14(20):6580–6589

    Article  PubMed  CAS  Google Scholar 

  98. Douek M, Tobias J (2005) How reliable is MRI for predicting extent of residual breast cancer with different primary medical therapies? Nat Clin Pract Oncol 2(3):128–129

    Article  PubMed  Google Scholar 

  99. DeMartini W, Lehman C (2008) A Review of current evidence-based clinical applications for breast magnetic resonance imaging. Top Magn Reson Imaging 19(3):143–150

    Article  PubMed  Google Scholar 

Download references

Conflict of interest statement

No benefits of any form have been or will be received from a commercial party related directly or indirectly to the subject of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louise C. Enfield.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Enfield, L.C., Gibson, A.P., Hebden, J.C. et al. Optical tomography of breast cancer—monitoring response to primary medical therapy. Targ Oncol 4, 219–233 (2009). https://doi.org/10.1007/s11523-009-0115-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11523-009-0115-z

Keywords

Navigation