Skip to main content
Log in

Estimating Lymphocyte Division and Death Rates from CFSE Data

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

The division tracking dye, carboxyfluorescin diacetate succinimidyl ester (CFSE) is currently the most informative labeling technique for characterizing the division history of cells in the immune system. Gett and Hodgkin [Nat. Immunol. 1:239–244, 2000] have pioneered the quantitative analysis of CFSE data. We confirm and extend their data analysis approach using simple mathematical models. We employ the extended Gett and Hodgkin [Nat. Immunol. 1:239–244, 2000] method to estimate the time to first division, the fraction of cells recruited into division, the cell cycle time, and the average death rate from CFSE data on T cells stimulated under different concentrations of IL-2. The same data is also fitted with a simple mathematical model that we derived by reformulating the numerical model of Deenick et al. [J. Immunol. 170:4963–4972, 2003]. By a non-linear fitting procedure we estimate parameter values and confidence intervals to identify the parameters that are influenced by the IL-2 concentration. We obtain a significantly better fit to the data when we assume that the T cell death rate depends on the number of divisions cells have completed. We provide an outlook on future work that involves extending the Deenick et al. [J. Immunol. 170:4963–4972, 2003] model into the classical smith-martin model, and into a model with arbitrary probability distributions for death and division through subsequent divisions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

“anti-CD3 mAb”:

monoclonal antibody (mAb) triggering T cell activation via the CD3 molecule associated with T cell antigen receptors

interleukin-2 (IL-2):

growth factor for T cells that is measured in “units/ml”, where 1 unit/ml is the concentration required to give 50% of the maximum response in the HT2 bioassay (Mosmann et al., 1986)

“thymidine”:

radioactively labeled 3H-thymidine that is incorporated in the DNA of dividing cells

BrdU:

nucleotide analog 5-bromo-2′-deoxyuridine also incorporated in the DNA of dividing cells

CFSE:

color dye “carboxyfluorescin diacetate succinimidyl ester” which is taken up in the cytosol of cells, and which dilutes twofold when cells divides

References

  • Bernard, S., Pujo-Menjouet, L., Mackey, M.C., 2003. Analysis of cell kinetics using a cell division marker: mathematical modeling of experimental data. Biophys. J. 84(5), 3414–3424.

    Article  Google Scholar 

  • De Boer, R.J., Perelson, A.S., 2005. Estimating division and death rates from CFSE data. J. Comp. Appl. Math. 184, 140–164.

    Article  MATH  MathSciNet  Google Scholar 

  • Deenick, E.K., Gett, A.V., Hodgkin, P.D., 2003. Stochastic model of T cell proliferation: A calculus revealing IL-2 regulation of precursor frequencies, cell cycle time, and survival. J. Immunol. 170, 4963–4972.

    Google Scholar 

  • Diekmann, O., Gyllenberg, M., Huang, H., Kirkilionis, M., Metz, J.A., Thieme, H.R., 2001. On the formulation and analysis of general deterministic structured population models. II. Nonlinear theory. J. Math. Biol. 43, 157–189.

    MATH  MathSciNet  Google Scholar 

  • Efron, B., Tibshirani, R., 1986. Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Stat. Sci. 1, 54–77.

    Article  MathSciNet  Google Scholar 

  • Ganusov, V.V., Pilyugin, S.S., De Boer, R.J., Murali-Krishna, K., Ahmed, R., Antia, R., 2005. Quantifying cell turnover using CFSE data. J. Immunol. Methods 298, 183–200.

    Article  Google Scholar 

  • Gett, A.V., Hodgkin, P.D., 1998. Cell division regulates the T cell cytokine repertoire, revealing a mechanism underlying immune class regulation. Proc. Natl. Acad. Sci. U.S.A. 95, 9488–9493.

    Google Scholar 

  • Gett, A.V., Hodgkin, P.D., 2000. A cellular calculus for signal integration by T cells. Nat. Immunol. 1, 239–244.

    Article  Google Scholar 

  • Hasbold, J., Corcoran, L.M., Tarlinton, D.M., Tangye, S.G., Hodgkin, P.D., 2004. Evidence from the generation of immunoglobulin G-secreting cells that stochastic mechanisms regulate lymphocyte differentiation. Nat. Immunol. 5, 55–63.

    Article  Google Scholar 

  • Hasbold, J., Gett, A.V., Rush, J.S., Deenick, E., Avery, D., Jun, J., Hodgkin, P.D., 1999. Quantitative analysis of lymphocyte differentiation and proliferation in vitro using carboxyfluorescein diacetate succinimidyl ester. Immunol. Cell. Biol. 77, 516–522.

    Article  Google Scholar 

  • Kaech, S.M., Ahmed, R., 2001. Memory CD8+ T cell differentiation: initial antigen encounter triggers a developmental program in naive cells. Nat. Immunol. 2, 415–422.

    Google Scholar 

  • Leon, K., Faro, J., Carneiro, J., 2004. A general mathematical framework to model generation structure in a population of asynchronously dividing cells. J. theor. Biol. 229, 455–476.

    Article  MathSciNet  Google Scholar 

  • Lyons, A.B., 2000. Analysing cell division in vivo and in vitro using flow cytometric measurement of CFSE dye dilution. J. Immunol. Methods. 243, 147–154.

    Article  Google Scholar 

  • Milutinović, D., 2004. Stochastic Model of Micro-Agent Populations. PhD Thesis, Institute for Systems and Robotics, Instituto Superior Tecnico, Lisbon, Portugal.

  • Mosmann, T.R., Bond, M.W., Coffman, R.L., Ohara, J., Paul, W.E., 1986. T-cell and mast cell lines respond to B-cell stimulatory factor 1. Proc. Natl. Acad. Sci. U.S.A. 83(15), 5654–5658.

    Google Scholar 

  • Nordon, R.E., Nakamura, M., Ramirez, C., Odell, R., 1999. Analysis of growth kinetics by division tracking. Immunol. Cell. Biol. 77(6), 523–529.

    Article  Google Scholar 

  • Pilyugin, S.S., Ganusov, V.V., Murali-Krishna, K., Ahmed, R., Antia, R., 2003. The rescaling method for quantifying the turnover of cell populations. J. Theor. Biol. 225, 275–283.

    Article  MathSciNet  Google Scholar 

  • Revy, P., Sospedra, M., Barbour, B., Trautmann, A., 2001. Functional antigen-independent synapses formed between T cells and dendritic cells. Nat. Immunol. 2, 925–931.

    Article  Google Scholar 

  • Smith, J.A., Martin, L., 1973. Do cells cycle? Proc. Natl. Acad. Sci. U.S.A. 70, 1263–1267.

  • Van Stipdonk, M.J., Lemmens, E.E., Schoenberger, S.P., 2001. Naive CTLs require a single brief period of antigenic stimulation for clonal expansion and differentiation. Nat. Immunol. 2, 423–429.

    Google Scholar 

  • Veiga-Fernandes, H., Walter, U., Bourgeois, C., McLean, A., Rocha, B., 2000. Response of naive and memory CD8+ T cells to antigen stimulation in vivo. Nat. Immunol. 1, 47–53.

    Article  Google Scholar 

  • Zhang, X.W., Audet, J., Piret, J.M., Li, Y.X., 2001. Cell cycle distribution of primitive haematopoietic cells stimulated in vitro and in vivo. Cell. Prolif. 34(5), 321–330.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rob J. De Boer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Boer, R.J., Ganusov, V.V., Milutinović, D. et al. Estimating Lymphocyte Division and Death Rates from CFSE Data. Bull. Math. Biol. 68, 1011–1031 (2006). https://doi.org/10.1007/s11538-006-9094-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-006-9094-8

Keywords

Navigation