Skip to main content
Log in

Modelling the Role of Angiogenesis and Vasculogenesis in Solid Tumour Growth

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Recent experimental evidence suggests that vasculogenesis may play an important role in tumour vascularisation. While angiogenesis involves the proliferation and migration of endothelial cells (ECs) in pre-existing vessels, vasculogenesis involves the mobilisation of bone-marrow-derived endothelial progenitor cells (EPCs) into the bloodstream. Once blood-borne, EPCs home in on the tumour site, where subsequently they may differentiate into ECs and form vascular structures.

In this paper, we develop a mathematical model, formulated as a system of nonlinear ordinary differential equations (ODEs), which describes vascular tumour growth with both angiogenesis and vasculogenesis contributing to vessel formation. Submodels describing exclusively angiogenic and exclusively vasculogenic tumours are shown to exhibit similar growth dynamics. In each case, there are three possible scenarios: the tumour remains in an avascular steady state, the tumour evolves to a vascular equilibrium, or unbounded vascular growth occurs. Analysis of the full model reveals that these three behaviours persist when angiogenesis and vasculogenesis act simultaneously. However, when both vascularisation mechanisms are active, the tumour growth rate may increase, causing the tumour to evolve to a larger equilibrium size or to expand uncontrollably. Alternatively, the growth rate may be left unaffected, which occurs if either vascularisation process alone is able to keep pace with the demands of the growing tumour.

To clarify further the effects of vasculogenesis, the full model is also used to compare possible treatment strategies, including chemotherapy and antiangiogenic therapies aimed at suppressing vascularisation. This investigation highlights how, dependent on model parameter values, targeting both ECs and EPCs may be necessary in order to effectively reduce tumour vasculature and inhibit tumour growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aghi, M., Chiocca, E.A., 2005. Contribution of bone marrow-derived cells to blood vessels in ischemic tissues and tumors. Mol. Ther. 12(6), 994–1005.

    Article  Google Scholar 

  • Amidon, G.L., Lee, P.I., Topp, E.M., 2000. Transport Processes in Pharmaceutical Systems. Dekker, New York.

    Google Scholar 

  • Arakelyan, L., Vainstein, V., Agur, Z., 2002. A computer algorithm describing the process of vessel formation and maturation, and its use for predicting the effects of anti-angiogenic and anti-maturation therapy on vascular tumor growth. Angiogenesis 5(3), 203–214.

    Article  Google Scholar 

  • Asahara, T., Murohara, T., Sullivan, A., Silver, M., van der Zee, R., Li, T., Witzenbichler, B., Schatteman, G., Isner, J.M., 1997. Isolation of putative endothelial cells for angiogenesis. Science 275(5302), 964–967.

    Article  Google Scholar 

  • Asahara, T., Takahashi, T., Masuda, H., Kalka, C., Chen, D., Iwaguro, H., Inai, Y., Silver, M., Isner, J.M., 1999. VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. EMBO J. 18(14), 3964–3972.

    Article  Google Scholar 

  • Bolontrade, M.F., Zhou, R.-R., Kleinerman, E.S., 2002. Vasculogenesis plays a role in the growth of Ewing’s sarcoma in Vivo. Clin. Cancer Res. 8(11), 3622–3627.

    Google Scholar 

  • Breward, C.J.W., Byrne, H.M., Lewis, C.E., 2003. A multiphase model describing vascular tumour growth. Bull. Math. Biol. 65(4), 609–640.

    Article  Google Scholar 

  • Byrne, H.M., Owen, M.R., Alarcón, T., Murphy, J., Maini, P.K., 2006. Modelling the response of vascular tumours to chemotherapy: a multiscale approach. Math. Models Methods Appl. Sci. 16(Suppl. Issue 1), 1219–1241.

    Article  MATH  MathSciNet  Google Scholar 

  • Carmeliet, P., 2003. Angiogenesis in health and disease. Nat. Med. 9(6), 653–660.

    Article  Google Scholar 

  • Carmeliet, P., Jain, R.K., 2000. Angiogenesis in cancer and other diseases. Nature 407(6801), 249–257.

    Article  Google Scholar 

  • di Bernardo, M., Budd, C., Champneys, A.R., Kowalczyk, P., Nordmark, A.B., Olivar, G., Piiroinen, P.T., Bifurcations in nonsmooth dynamical systems. BCANM Preprint 2005.4, http://www.enm.bris.ac.uk/anm/preprints/2005r04.html.

  • Dome, B., Timar, J., Dobos, J., Meszaros, L., Raso, E., Paku, S., Kenessey, I., Ostoros, G., Magyar, M., Ladanyi, A., Bogos, K., Tovari, J., 2006. Identification and clinical significance of circulating endothelial progenitor cells in human non-small cell lung cancer. Cancer Res. 66(14), 7341–7347.

    Article  Google Scholar 

  • Drake, C.J., 2003. Embryonic and adult vasculogenesis. Birth Defects Res. Part C 69(1), 73–82.

    Article  Google Scholar 

  • Duda, D.G., Cohen, K.S., Kozin, S.V., Perentes, J.Y., Fukumura, D., Scadden, D.T., Jain, R.K., 2006. Evidence for incorporation of bone marrow-derived endothelial cells into perfused blood vessels in tumors. Blood 107(7), 2774–2776.

    Article  Google Scholar 

  • Ermentrout, B., 2002. Simulating, Analyzing, and Animating Dynamical Systems. A Guide to XPPAUT for Researchers and Students. SIAM, Philadelphia.

    MATH  Google Scholar 

  • Folkman, J., 1971. Tumor angiogenesis: therapeutic implications. N. Engl. J. Med. 285(21), 1182–1186.

    Article  Google Scholar 

  • Gerlowski, L.E., Jain, R.K., 1983. Physiologically based pharmacokinetic modeling: principles and applications. J. Pharm. Sci. 72(10), 1103–1127.

    Article  Google Scholar 

  • Gill, M., Dias, S., Hattori, K., Rivera, M.L., Hicklin, D., Witte, L., Girardi, L., Yurt, R., Himel, H., Rafii, S., 2001. Vascular trauma induces rapid but transient mobilization of VEGFR2+AC133+ endothelial precursor cells. Circ. Res. 88(2), 167–174.

    Google Scholar 

  • Griffon-Etienne, G., Boucher, Y., Brekken, C., Suit, H.D., Jain, R.K., 1999. Taxane-induced apoptosis decompresses blood vessels and lowers interstitial fluid pressure in solid tumours: clinical implications. Cancer Res. 59(15), 3776–3782.

    Google Scholar 

  • Harris, A.L., 2002. Hypoxia—a key regulatory factor in tumour growth. Nat. Rev. Cancer 2(1), 38–47.

    Article  Google Scholar 

  • Hattori, K., Dias, S., Heissig, B., Hackett, N.R., Lyden, D., Tateno, M., Hicklin, D.J., Zhu, Z., Witte, L., Crystal, L.G., Moore, M.A.S., Rafii, S., 2001. Vascular endothelial growth factor and angiopoietin-1 stimulate postnatal hematopoiesis by recruitment of vasculogenic and hematopoietic stem cells. J. Exp. Med. 193(9), 1005–1014.

    Article  Google Scholar 

  • Heissig, B., Hattori, K., Dias, S., Friedrich, M., Ferris, B., Hackett, N.R., Crystal, R.G., Besmer, P., Lyden, D., Moore, M.A.S., Werb, Z., Rafii, S., 2002. Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of Kit-ligand. Cell 109(5), 625–637.

    Article  Google Scholar 

  • Helmlinger, G., Netti, P.A., Lichtenbeld, H.C., Melder, R.J., Jain, R.K., 1997. Solid stress inhibits the growth of multicellular tumor spheroids. Nat. Biotech. 15(8), 778–783.

    Article  Google Scholar 

  • Hoeben, A., Landuyt, B., Highley, M.S., Wildiers, H., Van Oosterom, A.T., De Bruijn, E.A., 2004. Vascular endothelial growth factor and angiogenesis. Pharmacol. Rev. 56(4), 549–580.

    Article  Google Scholar 

  • Hristov, M., Erl, W., Weber, P.C., 2003. Endothelial progenitor cells, mobilization, differentiation and homing. Art. Thromb. Vasc. Biol. 23(7), 1185–1189.

    Article  Google Scholar 

  • Hunting, C.B., Noort, W.A., Zwaginga, J.J., 2005. Circulating endothelial (progenitor) cells reflect the state of the endothelium: vascular injury, repair and neovascularization. Vox Sang. 88(1), 1–9.

    Article  Google Scholar 

  • Hur, J., Yoon, C.-H., Kim, H.-S., Choi, J.-H., Kang, H.-J., Hwang, K.-K., Oh, B.-H., Lee, M.-M., Park, Y.-B., 2004. Characterization of two types of endothelial progenitor cells and their different contributions to neovasculogenesis. Art. Thromb. Vasc. Biol. 24(2), 288–293.

    Article  Google Scholar 

  • Jain, R.K., 1988. Determinants of tumor blood flow: a review. Cancer Res. 48, 2641–2658.

    Google Scholar 

  • Jain, R.K., 2003. Molecular regulation of vessel maturation. Nat. Med. 9(6), 685–693.

    Article  Google Scholar 

  • Jin, H., Aiyer, A., Su, J., Borgstrom, P., Stupack, D., Friedlander, M., Varner, J., 2006. A homing mechanism for bone marrow-derived progenitor cell recruitment to the neovasculature. J. Clin. Invest. 116(3), 652–662.

    Article  Google Scholar 

  • Jordan, D.W., Smith, P., 1999. Nonlinear Ordinary Differential Equations. An Introduction to Dynamical Systems, 3rd edn. Oxford University Press, Oxford.

    MATH  Google Scholar 

  • Ke, L.D., Shi, Y.-X., Im, S.-A., Chen, X., Yung, W.K.A., 2000. The relevance of cell proliferation, vascular endothelial growth factor production, and basic fibroblast growth factor production to angiogenesis and tumorigenicity in human glioma cell lines. Clin. Cancer Res. 6, 2562–2572.

    Google Scholar 

  • Khakoo, A.Y., Finkel, T., 2005. Endothelial progenitor cells. Annu. Rev. Med. 56, 79–101.

    Article  Google Scholar 

  • Kim, H.K., Song, K.S., Kim, H.O., Chung, J.-H., Lee, K.R., Lee, Y.-J., Lee, D.H., Lee, E.S., Kim, H.K., Ryu, K.W., Bae, J.-M., 2003. Circulating numbers of endothelial progenitor cells in patients with gastric and breast cancer. Cancer Lett. 198(1), 83–88.

    Article  Google Scholar 

  • Kolomecki, K., Stepien, H., Bartos, M., Kuzdak, K., 2001. Usefulness of VEGF, MMP-2, MMP-3 and TIMP-2 serum level evaluation in patients with adrenal tumours. Endo. Reg. 35(1), 9–16.

    Google Scholar 

  • Komarova, N.L., Mironov, V., 2005. On the role of endothelial progenitor cells in tumor neovascularization. J. Theor. Biol. 235(3), 338–349.

    Article  MathSciNet  Google Scholar 

  • Kraft, A., Weindel, K., Ochs, A., Marth, C., Zmija, J., Schumacher, P., Unger, C., Marme, D., Gastl, G., 1999. Vascular endothelial growth factor in the sera and effusions of patients with malignant and nonmalignant disease. Cancer 85, 178–187.

    Article  Google Scholar 

  • Leine, R.I., van Campen, D.H., van de Vrande, B.L., 2000. Bifurcations in nonlinear discontinuous systems. Nonlin. Dyn. 23(2), 105–164.

    Article  MATH  Google Scholar 

  • Li, H., Gerald, W.L., Benezra, R., 2004. Utilization of bone marrow-derived endothelial cell precursors in spontaneous prostate tumors varies with tumor grade. Cancer Res. 64(17), 6137–6143.

    Article  Google Scholar 

  • Li, B., Sharpe, E.E., Maupin, A.B., Teleron, A.A., Pyle, A.L., Carmeliet, P., Young, P.P., 2006. VEGF and P1GF promote adult vasculogenesis by enhancing EPC recruitment and vessel formation at the site of tumor neovascularization. FASEB 20, E664–E676.

    Google Scholar 

  • Lyden, D., Hattori, K., Dias, S., Costa, C., Blaikie, P., Butros, L., Chadburn, A., Heissig, B., Marks, W., Witte, L., Wu, Y., Hicklin, D., Zhu, Z., Hackett, N.R., Crystal, R.G., Moore, M.A.S., Hajjar, K.A., Manova, K., Benezra, R., Rafii, S., 2001. Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumour angiogenesis and growth. Nat. Med. 7(11), 1194–1201.

    Article  Google Scholar 

  • Mantzaris, N.V., Webb, S., Othmer, H.G., 2004. Mathematical modeling of tumor-induced angiogenesis. J. Math. Biol. 49(2), 111–187.

    Article  MATH  MathSciNet  Google Scholar 

  • McDougall, S.R., Anderson, A.R.A., Chaplain, M.A.J., 2006. Mathematical modelling of dynamic adaptive tumour-induced angiogenesis: clinical implications and therapeutic targeting strategies. J. Theor. Biol. 241(3), 564–589.

    Article  MathSciNet  Google Scholar 

  • Moore, M.A.S., Hattori, K., Heissig, B., Shieh, J.-H., Dias, S., Crystal, R.G., Rafii, S., 2001. Mobilization of endothelial and hematopoietic stem and progenitor cells by adenovector-mediated elevation of serum levels of SDF-1, VEGF, and angiopoietin-1. Ann. New York Acad. Sci. 938, 36–47.

    Article  Google Scholar 

  • Murray, J.D., 1993. Mathematical Biology, 2nd edn. Springer, New York.

    MATH  Google Scholar 

  • Oku, T., Tjuvajev, J.G., Miyagawa, T., Sasajima, T., Joshi, A., Joshi, R., Finn, R., Claffey, K.P., Blasberg, R.G., 1998. Tumor growth modulation by sense and antisense vascular endothelial growth factor gene expression: effects on angiogenesis, vascular permeability, blood volume, blood flow, fluorodeoxyglucose uptake, and proliferation of human melanoma intracerebral xenografts. Cancer Res. 58(18), 4185–4192.

    Google Scholar 

  • Padera, T.P., Stoll, B.R., Tooredman, J.B., Capen, D., di Tomaso, E., Jain, R.K., 2004. Cancer cells compress intratumour vessels. Nature 427(6976), 695.

    Article  Google Scholar 

  • Peters, B.A., Diaz , L.A. Jr., Polyak, K., Meszler, L., Romans, K., Guinan, E.C., Antin, J.H., Myerson, D., Hamilton, S.R., Vogelstein, B., Kinzler, K.W., Lengauer, C., 2005. Contribution of bone marrow-derived endothelial cells to human tumor vasculature. Nat. Med. 11(3), 261–262.

    Article  Google Scholar 

  • Rafii, S., Lyden, D., Benezra, R., Hattori, K., Heissig, B., 2002. Vascular and haematopoietic stem cells: novel targets for anti-angiogenesis therapy?. Nat. Rev. Cancer 2(11), 826–835.

    Article  Google Scholar 

  • Ribatti, D., 2004. The involvement of endothelial progenitor cells in tumor angiogenesis. J. Cell Mol. Med. 8(3), 294–300.

    Article  Google Scholar 

  • Risau, W., Flamme, I., 1995. Vasculogenesis. Annu. Rev. Cell Dev. Biol. 11, 73–91.

    Article  Google Scholar 

  • Schatteman, G.C., Awad, O., 2004. Hemangioblasts, angioblasts, and adult endothelial cell progenitors. Anat. Rec. Part A 276, 13–21.

    Article  Google Scholar 

  • Shargel, L., Yu, A.B.C., 1999. Applied Biopharmaceutics & Pharmacokinetics, 4th edn. Appleton & Lange.

  • Soker, S., Gollamudi-Payne, S., Fidder, H., Charmahelli, H., Klagsbrun, M., 1997. Inhibition of vascular endothelial growth factor (VEGF)-induced endothelial cell proliferation by a peptide corresponding to the exon 7-encoded domain of VEGF165. J. Biol. Chem. 272(50), 31582–31588.

    Article  Google Scholar 

  • Song, S., Ewald, A.J., Stallcup, W., Werb, Z., Bergers, G., 2005. PDGFRβ + perivascular progenitor cells in tumours regulate pericyte differentiation and vascular survival. Nat. Cell Biol. 7(9), 870–879.

    Article  Google Scholar 

  • Spring, H., Schüler, T., Arnold, B., Hämmerling, G.J., Ganss, R., 2005. Chemokines direct endothelial progenitors into tumor neovessels. Proc. Natl. Acad. Sci. USA 102(50), 18111–18116.

    Article  Google Scholar 

  • Stoll, B.R., Migliorini, C., Kadambi, A., Munn, L.L., Jain, R.K., 2003. A mathematical model of the contribution of endothelial progenitor cells to angiogenesis in tumor: implications for antiangiogenic therapy. Blood 102(7), 2555–2561.

    Article  Google Scholar 

  • Sussman, L.K., Upalakalin, J.N., Roberts, M.J., Kocher, O., Benjamin, L.E., 2003. Blood markers for vasculogenesis increase with tumour progression in patients with breast carcinoma. Cancer Biol. Ther. 2(3), 255–256.

    Google Scholar 

  • Tannock, I.F., 1970. Population kinetics of carcinoma cells, capillary endothelial cells, and fibroblasts in a transplanted mouse mammary tumor. Cancer Res. 30, 2470–2476.

    Google Scholar 

  • Tannock, I.F., Hayashi, S., 1972. The proliferation of capillary endothelial cells. Cancer Res. 32, 77–82.

    Google Scholar 

  • Tepper, O.M., Capla, J.M., Galiano, R.D., Ceradini, D.J., Callaghan, M.J., Kleinman, M.E., Gurtner, G.C., 2005. Adult vasculogenesis occurs through in situ recruitment, proliferation, and tubulization of circulating bone marrow-derived cells. Blood 105(3), 1068–1077.

    Article  Google Scholar 

  • Thompson, H.J., Strange, R., Schedin, P.J., 1992. Apoptosis in the genesis and prevention of cancer. Cancer Epidemiol. Biomark. Prev. 1, 597–602.

    Google Scholar 

  • Vajkoczy, P., Blum, S., Lamparter, M., Mailhammer, R., Erber, R., Engelhardt, B., Vestweber, D., Hatzopoulos, A.K., 2003. Multistep nature of microvascular recruitment of ex vivo-expanded embryonic endothelial progenitor cells during tumor angiogenesis. J. Exp. Med. 197(12), 1755–1765.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. J. Stamper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stamper, I.J., Byrne, H.M., Owen, M.R. et al. Modelling the Role of Angiogenesis and Vasculogenesis in Solid Tumour Growth. Bull. Math. Biol. 69, 2737–2772 (2007). https://doi.org/10.1007/s11538-007-9253-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-007-9253-6

Keywords

Navigation