Skip to main content

Advertisement

Log in

Latent Coinfection and the Maintenance of Strain Diversity

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Technologies for strain differentiation and typing have made it possible to detect genetic diversity of pathogens, both within individual hosts and within communities. Coinfection of a host by more than one pathogen strain may affect the relative frequency of these strains at the population level through complex within- and between-host interactions; in infectious diseases that have a long latent period, interstrain competition during latency is likely to play an important role in disease dynamics. We show that SEIR models that include a class of latently coinfected individuals can have markedly different long-term dynamics than models without coinfection, and that coinfection can greatly facilitate the stable coexistence of strains. We demonstrate these dynamics using a model relevant to tuberculosis in which people may experience latent coinfection with both drug sensitive and drug resistant strains. Using this model, we show that the existence of a latent coinfected state allows the possibility that disease control interventions that target latency may facilitate the emergence of drug resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adler, F.R., Losada, J.M., 2002. Super-and coinfection: filling the range. In: Dieckmann, U. (Ed.), Adaptive Dynamics of Infectious Diseases: In Pursuit of Virulence Management, pp. 139–149. Cambridge University Press, Cambridge.

    Google Scholar 

  • Almeida, A.M.F., Matsumoto, M.T., Baeza, L.C., Silva, R., Aparecida, A., Kleiner, A., Melhem, M., Giannini, M., 2007. Molecular typing and antifungal susceptibility of clinical sequential isolates of cryptococcus neoformans from Sao Paulo state, Brazil. FEMS Yeast Res. 7(1), 152–164.

    Article  Google Scholar 

  • Aziz, M.A., Wright, A., 2005. The world health organization/international union against tuberculosis and lung disease global project on surveillance for anti-tuberculosis drug resistance: a model for other infectious diseases. Clin. Infect. Dis. 41(Suppl 4), S258–S262.

    Article  Google Scholar 

  • Carrillo, F.Y.E., Sanjuán, R., Moya, A., Cuevas, J.M., 2007. The effect of co-and superinfection on the adaptive dynamics of vesicular stomatitis virus. Infect. Genet. Evol. 7(1), 69–73.

    Article  Google Scholar 

  • Casado, C., Pernas, M., Alvaro, T., Sandonis, V., Garcia, S., Rodriguez, C., del Romero, J., Grau, E., Ruiz, L., Lopez-Galindez, C., 2007. Coinfection and superinfection in patients with long-term, nonprogressive HIV-1 disease. J. Infect. Dis. 196(6), 895–899.

    Article  Google Scholar 

  • Claessen, D., de Roos, A.M., 1995. Evolution of virulence in a host-pathogen system with local pathogen transmission. Oikos 74(3), 401–413.

    Article  Google Scholar 

  • Cohen, T., Lipsitch, M., Walensky, R.P., Murray, M., 2006. Beneficial and perverse effects of isoniazid preventive therapy for latent tuberculosis infection in HIV–tuberculosis coinfected populations. Proc. Natl. Acad. Sci. 103(18), 7042–7047.

    Article  Google Scholar 

  • Davies, A.P., Billington, O.J., Bannister, B.A., Weir, W.R., McHugh, T.D., Gillespie, S.H., 2000. Comparison of fitness of two isolates of mycobacterium tuberculosis, one of which had developed multi-drug resistance during the course of treatment. J. Infect. 41(2), 184–187.

    Article  Google Scholar 

  • Eames, K.T.D., Keeling, M.J., 2006. Coexistence and specialization of pathogen strains on contact networks. Am. Nat. 168(2), 230–241.

    Article  Google Scholar 

  • Elbasha, E.H., Galvani, A.P., 2005. Vaccination against multiple HPV types. Math. Biosci. 197(1), 88–117.

    Article  MATH  MathSciNet  Google Scholar 

  • Gandhi, N., Moll, A., Willem Sturm, A., Pawinski, R., Govender, T., Lalloo, U., Zeller, K., Andrews, J., Friedland, G., 2006. Extensively drug-resistant tuberculosis as a cause of death in patients co-infected with tuberculosis and HIV in a rural area of South Africa. Lancet 368(9547), 1575–1580.

    Article  Google Scholar 

  • Iannelli, M., Martcheva, M., Li, X.Z., 2005. Strain replacement in an epidemic model with superinfection and perfect vaccination. Math. Biosci. 195(1), 23–46.

    Article  MATH  MathSciNet  Google Scholar 

  • Levin, S., Pimentel, D., 1981. Selection of intermediate rates of increase in parasite-host systems. Am. Nat. 117(3), 308–315.

    Article  MathSciNet  Google Scholar 

  • Levin, S.A., 1983. Some approaches to the modeling of coevolutionary interactions. In: Coevolution, pp. 21–65. University of Chicago Press, Chicago.

    Google Scholar 

  • Li, J., Ma, Z., Blythe, S.P., Castillo-Chavez, C., 2003. Coexistence of pathogens in sexually-transmitted disease models. J. Math. Biol. 47(6), 547–568.

    Article  MATH  MathSciNet  Google Scholar 

  • Li, X., Zhang, Y., Shen, X., Shen, G., Gui, X., Sun, B., et al., 2007. Transmission of drug-resistant tuberculosis among treated patients in Shanghai, China. J. Infect. Dis. 195(6), 864–869.

    Article  Google Scholar 

  • Lipsitch, M., 1997. Vaccination against colonizing bacteria with multiple serotypes. Proc. Natl. Acad. Sci. 94(12), 6571–6576.

    Article  Google Scholar 

  • Martcheva, M., Pilyugin, S.S., Holt, R.D., 2007. Subthreshold and superthreshold coexistence of pathogen variants: the impact of host age-structure. Math. Biosci. 207(1), 58–77.

    Article  MATH  MathSciNet  Google Scholar 

  • May, R.M., Nowak, M.A., 1995. Coinfection and the evolution of parasite virulence. Proc. Biol. Sci. 261(1361), 209–215.

    Article  Google Scholar 

  • Mosquera, J., Adler, F.R., 1998. Evolution of virulence: a unified framework for coinfection and superinfection. J. Theor. Biol. 195(3), 293–313.

    Article  Google Scholar 

  • Murrell, D.J., Law, R., 2003. Heteromyopia and the spatial coexistence of similar competitors. Ecol. Lett. 6(1), 48–59.

    Article  Google Scholar 

  • Rattan, A., Kalia, A., Ahmad, N., 1998. Multidrug-resistant mycobacterium tuberculosis: molecular perspectives. Emerg. Infect. Dis. 4(2), 195–209.

    Article  Google Scholar 

  • Rodrigues, P., Gomes, M.G.M., Rebelo, C., 2007. Drug resistance in tuberculosis—a reinfection model. Theor. Popul. Biol. 71(2), 196–212.

    Article  MATH  Google Scholar 

  • Schinazi, R.B., 1997. Predator-prey and host-parasite spatial stochastic models. Ann. Appl. Probab. 7(1), 1–9.

    Article  MATH  MathSciNet  Google Scholar 

  • Shigidi, M., Hashim, R., Idris, M., Mukhtar, M., Sokrab, T., 2004. Parasite diversity in adult patients with cerebral malaria: a hospital-based, case-control study. Am. J. Trop. Med. Hyg. 71(6), 754–757.

    Google Scholar 

  • Troyer, R.M., Collins, K.R., Abraha, A., Fraundorf, E., Moore, D.M., Krizan, R.W., Toossi, Z., Colebunders, R.L., Jensen, M.A., Mullins, J.I., et al., 2005. Changes in human immunodeficiency virus type 1 fitness and genetic diversity during disease progression. J. Virol. 79(14), 9006.

    Article  Google Scholar 

  • van Rie, A., Victor, T., Richardson, M., Johnson, R., van der Spuy, G., Murray, E., Beyers, N., van Pittius, N., van Helden, P., Warren, R., 2005. Reinfection and mixed infection cause changing mycobacterium tuberculosis drug-resistance patterns. Am. J. Respir. Crit. Care Med. 172(5), 636–642.

    Article  Google Scholar 

  • Warren, R.M., Victor, T.C., Streicher, E.M., Richardson, M., Beyers, N., van Pittius, N.C.G., van Helden, P.D., 2004. Patients with active tuberculosis often have different strains in the same sputum specimen. Am. J. Respir. Crit. Care Med. 169(5), 610.

    Article  Google Scholar 

  • Wodarz, D., Levy, D.N., 2007. Human immunodeficiency virus evolution towards reduced replicative fitness in vivo and the development of AIDS. Proc. R. Soc. B: Biol. Sci. 274(1624), 2481–2490.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caroline Colijn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colijn, C., Cohen, T. & Murray, M. Latent Coinfection and the Maintenance of Strain Diversity. Bull. Math. Biol. 71, 247–263 (2009). https://doi.org/10.1007/s11538-008-9361-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-008-9361-y

Keywords

Navigation