Skip to main content

Advertisement

Log in

Transmission Dynamics of an Influenza Model with Vaccination and Antiviral Treatment

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Vaccination and antiviral treatment are two important prevention and control measures for the spread of influenza. However, the benefit of antiviral use can be compromised if drug-resistant strains arise. In this paper, we develop a mathematical model to explore the impact of vaccination and antiviral treatment on the transmission dynamics of influenza. The model includes both drug-sensitive and resistant strains. Analytical results of the model show that the quantities ℛ SC and ℛ RC , which represent the control reproduction numbers of the sensitive and resistant strains, respectively, provide threshold conditions that determine the competitive outcomes of the two strains. These threshold conditions can be used to gain important insights into the effect of vaccination and treatment on the prevention and control of influenza. Numerical simulations are also conducted to confirm and extend the analytic results. The findings imply that higher levels of treatment may lead to an increase of epidemic size, and the extent to which this occurs depends on other factors such as the rates of vaccination and resistance development. This suggests that antiviral treatment should be implemented appropriately.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander, M.E., Bowman, C.S., Moghadas, S.M., Summers, R., Gumel, A.B., Sahai, B.M., 2004. A vaccination model for transmission dynamics of influenza. SIAM J. Appl. Dyn. Syst. 3, 503–524.

    Article  MATH  MathSciNet  Google Scholar 

  • Alexander, M.E., Bowman, C.S., Feng, Z., Gardam, M., Moghadas, S.M., Röst, G., Wu, J., Yan, P., 2007. Emergence of drug resistance: implications for antiviral control of pandemic influenza. Proc. R. Soc. B 274, 1675–1684.

    Article  Google Scholar 

  • Alexander, M.E., Moghadas, S.M., Röst, G., Wu, J., 2008. A delay differential model for pandemic influenza with antiviral treatment. Bull. Math. Biol. 70, 382–397.

    Article  MATH  MathSciNet  Google Scholar 

  • Arino, J., Mccluskey, C.C., van den Driessche, P., 2003. Global results for an epidemic model with vaccination that exhibits backward bifurcation. SIAM J. Appl. Math. 64, 260–276.

    Article  MATH  MathSciNet  Google Scholar 

  • Arino, J., Brauer, F., Driessche, P., van den Watmough, J., Wu, J., 2007. A final size relation for epidemic models. Math. Biosci. Eng. 4, 159–175.

    MATH  MathSciNet  Google Scholar 

  • Castillo-Chavez, C., Thieme, H.R., 1995. Asymptotically autonomous epidemic models. In: Arino, O., Kimmel, M. (Eds.), Mathematical Population Dynamics: Analysis of Heterogeneity. Theory of Epidemics. Wuetz 1, pp. 33–50.

  • Centers for disease control and prevention, 2008. http://www.cdc.gov/flu/flu_vaccine_updates.htm.

  • Driessche, P., van den Watmough, J., 2002. Reproduction numbers and sub-threshold endemic equilibria for compartment models of disease transmission. Math. Biosci. 180, 29–48.

    Article  MATH  MathSciNet  Google Scholar 

  • Earn, D.J.D., Dushoff, J., Levin, S.A., 2002. Ecology and evolution of the flu. Trends Ecol. Evol. 17, 334–340.

    Article  Google Scholar 

  • Feng, Z., 2007. Final and peak epidemic sizes for SEIR models with quarantine and isolation. Math. Biosci. Eng. 4, 675–686.

    MATH  MathSciNet  Google Scholar 

  • Ferguson, N.M., Mallett, S., Jackson, H., Roberts, N., Ward, P., 2003. A population-dynamic model for evaluating the potential spread of drug-resistant influenza virus infections during community-based use of antivirals. J. Antimicrob. Chemother. 51, 977–990.

    Article  Google Scholar 

  • Fiore, A.E., Shay, D.K., Haber, P., Iskander, J.K., Uyeki, T.M., Mootrey, G., Bresee, J.S., Cox, N.J., 2007. Prevention and control of influenza. http://www.cdc.gov/mmwr/preview/mmwrhtml/rr5606a1.htm.

  • Kiso, M., Mitamura, K., Sakai-Tagawa, Y., Shiraishi, K., Kawakami, C., et al., 2004. Resistant influenza A viruses in children treated with oseltamivir: Descriptive study. Lancet 364, 759–765.

    Article  Google Scholar 

  • Lamb, R.A., 1989. Genes and proteins of the influenza virus. In: Krug, R.M., Fraenkel-Conrat, H., Wagner, R.R. (Eds.), In The Influenza Viruses, pp. 1–87. Plenum, New York.

    Google Scholar 

  • Li, M.Y., Muldowney, J.S., 1995. On R.A. Smith’s autonomous convergence theorem. Rocky Mt. J. Math. 25, 365–379.

    Article  MATH  MathSciNet  Google Scholar 

  • Lipsitch, M., Cohen, T., Muray, M., Levin, B.R., 2007. Antiviral resistance and the control of pandemic influenza. PLoS Med. 4, 0111–0120.

    Article  Google Scholar 

  • Ma, J., Earn, D.J.D., 2006. Generality of the final size formula for an epidemic of a newly invading infectious disease. Bull. Math. Biol. 68, 679–702.

    Article  MathSciNet  Google Scholar 

  • McCaw, J.M., McVernon, J., 2007. Prophylaxis or treatment? Optimal use of an antiviral stockpile during an influenza pandemic. Math. Biosci. 209, 336–360.

    Article  MATH  MathSciNet  Google Scholar 

  • McCaw, J.M., Wood, J.G., McCaw, C.T., McVernon, J., 2008. Impact of emerging antiviral drug resistance on influenza containment and spread: Influence of subclinical infection and strategic use of a stockpile containing one or two drugs. PLoS ONE 3, e2362. doi:10.1371/journal.pone.0002362.

    Article  Google Scholar 

  • Mills, C.E., Robins, J.M., Lipsitich, M., 2004. Transmissibility of 1918 influenza. Nature 432, 904–906.

    Article  Google Scholar 

  • Mischaikow, K., Smith, H.L., Thieme, H.R., 1995. Asymptotically autonomous semiflows: Chain recurrence and Lyapunov functions. Trans. Am. Math. Soc. 347, 1669–1685.

    Article  MATH  MathSciNet  Google Scholar 

  • Nuño, M., Feng, Z., Martcheva, M., Castillo-Chavez, C., 2005. Dynamics of two-strain influenza with isolation and partial cross-immunity. SIAM J. Appl. Math. 65, 964–982.

    Article  MATH  MathSciNet  Google Scholar 

  • Regoes, R.R., Bonhoeffer, S., 2006. Emergence of drug-resistant influenza virus: Population dynamical considerations. Science 312, 389–391.

    Article  Google Scholar 

  • Smith, H.L., 1995. Monotone Dynamical System. An Introduction to the Theory of Competitive and Cooperative Systems. Mathematical Surveys and Monographs, vol. 104. American Mathematical Society, Providence.

    Google Scholar 

  • Thieme, H.R., 1993. Persistence under relaxed point-dissipativity with an application to an epidemic model. SIAM J. Math. Anal. 24, 407–435.

    Article  MATH  MathSciNet  Google Scholar 

  • Wang, W.D., Zhao, X.Q., 2004. An epidemic model in a patchy environment. Math. Biosci. 190, 97–112.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhilan Feng.

Additional information

Supported by the NSF of China grant 10801074.

Partially supported by NSF grant DMS-0719697.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qiu, Z., Feng, Z. Transmission Dynamics of an Influenza Model with Vaccination and Antiviral Treatment. Bull. Math. Biol. 72, 1–33 (2010). https://doi.org/10.1007/s11538-009-9435-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-009-9435-5

Keywords

Navigation