Skip to main content

Advertisement

Log in

A Tuberculosis Model with Seasonality

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

The statistical data of tuberculosis (TB) cases show seasonal fluctuations in many countries. A TB model incorporating seasonality is developed and the basic reproduction ratio R 0 is defined. It is shown that the disease-free equilibrium is globally asymptotically stable and the disease eventually disappears if R 0<1, and there exists at least one positive periodic solution and the disease is uniformly persistent if R 0>1. Numerical simulations indicate that there may be a unique positive periodic solution which is globally asymptotically stable if R 0>1. Parameter values of the model are estimated according to demographic and epidemiological data in China. The simulation results are in good accordance with the seasonal variation of the reported cases of active TB in China.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Akhtar, S., Mohammad, H.G., 2008. Seasonality in pulmonary tuberculosis among migrant workers entering Kuwait. BMC Infect. Dis. 8. doi:10.1186/1471-2334-8-3.

  • Altizer, S., Dobson, A., Hosseini, P., Hudson, P., Pascual, M., Rohani, P., 2006. Seasonality and the dynamics of infectious diseases. Ecol. Lett. 9, 467–484.

    Article  Google Scholar 

  • Aron, J.L., Schwartz, I.B., 1984. Seasonality and period-doubling bifurcations in an epidemic model. J. Theor. Biol. 110, 665–679.

    Article  MathSciNet  Google Scholar 

  • Bass, J.B. Jr., Farer, L.S., Hopewell, P.C., O’Brien, R., Jacobs, R.F., Ruben, F., Snider, D.E. Jr., Thornton, G., 1994. American thoracic society, treatment of tuberculosis and tuberculosis infection in adults and children. Am. J. Respir. Crit. Care Med. 149, 1359–1374.

    Google Scholar 

  • Bleed, D., Watt, C., Dye, C., 2001. World health report 2001: global tuberculosis control. Technical Report, World Health Organization, WHO/CDS/TB/2001.287. http://whqlibdoc.who.int/hq/2001/WHO_CDS_TB_2001.287.pdf.

  • Blower, S.M., 1995. The intrinsic transmission dynamics of tuberculosis epidemics. Nat. Med. 1, 815–821.

    Article  Google Scholar 

  • Blower, S.M., Chou, T., 2004. Modeling the emergence of the ‘hot zones’: tuberculosis and the amplification dynamics of drug resistance. Nat. Med. 10, 1111–1116.

    Article  Google Scholar 

  • Blower, S.M., Small, P.M., Hopewell, P.C., 1996. Control strategies for tuberculosis epidemics: new models for old problems. Science 273, 497–500.

    Article  Google Scholar 

  • Douglas, A.S., Strachan, D.P., Maxwell, J.D., 1996. Seasonality of tuberculosis: the reverse of other respiratory disease in the UK. Thorax 51, 944–946.

    Article  Google Scholar 

  • Dye, C., Floyd, K., Uplekar, M., 2008. World health report 2008: Global tuberculosis control: surveillance, planning, financing. World Health organization, WHO/HTM/TB/2008.393. http://www.who.int/entity/tb/publications/global_report/2008/pdf/-fullreport.pdf.

  • Grassly, N.C., Fraser, C., 2006. Seasonality infectious disease epidemiology. Proc. R. Soc. B 273, 2541–2550.

    Article  Google Scholar 

  • Greenman, J., Kamo, M., Boots, M., 2004. External forcing of ecological and epidemiological systems: a resonance approach. Physica D 190, 136–151.

    Article  MATH  Google Scholar 

  • Hethcote, H.W., Yorke, J.A., 1984. Gonorrhea Transmission Dynamics and Control, Lecture Notes in Biomathematics, vol. 56, p. 105. Springer, Berlin.

    MATH  Google Scholar 

  • Janmeja, A.K., Mohapatra, P.R., 2005. Seasonality of tuberculosis. Int. J. Tuberc. Lung Dis. 9, 704–705.

    Google Scholar 

  • Leung, C.C., Yew, W.W., Chan, T.Y.K., Tam, C.M., Chan, C.Y., Chan, C.K., Tang, N., Chang, K.C., Law, W.S., 2005. Seasonal pattern of tuberculosis in Hong Kong. Int. J. Epidemiol. 34, 924–930.

    Article  Google Scholar 

  • Lietman, T., Blower, S.M., 2000. Potential impact of tuberculosis vaccines as epidemic control agents. Clin. Infect. Dis. 30, s316–s322.

    Article  Google Scholar 

  • Ma, Z., Zhou, Y., Wang, W., Jin, Z., 2004. Mathematical Modeling and Studying of Dynamic Models of Infectious Diseases. Science Press, London.

    Google Scholar 

  • Ministry of Health of the People’s Republic of China, 2002. Report on nationwide random survey for the epidemiology of tuberculosis in 2000, Beijing: The Ministry of Health of the People’s Republic of China.

  • Ministry of Health of the People’s Republic of China, 2005–2009. The Ministry of Health Bulletin. http://202.96.155.170/publicfiles/business/htmlfiles/mohbgt/pwsbgb/-index.htm.

  • Ministry of Health, China, 2006. Notifiable communicable Disease in China, 2007, http://www.moh.gov.cn/newshtml/17829.htm.

  • Nagayama, N., Ohmori, M., 2006. Seasonality in various forms of tuberculosis. Int. J. Tuberc. Lung Dis. 10, 1117–1122.

    Google Scholar 

  • National Bureau of Statistics of China, 2008. Statistical Data. http://www.stats.gov.cn/tjsj/ndsj/2007/indexch.htm.

  • Porco, T.C., Blower, S.M., 1998. Quantifying the intrinsic transmission dynamics of tuberculosis. Theor. Popul. Biol. 54, 117–132.

    Article  MATH  Google Scholar 

  • Rios, M., Garcia, J.M., Sanchez, J.A., Perez, D., 2000. A statistical analysis of the seasonality in pulmonary tuberculosis. Eur. J. Epidemiol. 16, 483–488.

    Article  Google Scholar 

  • Rodrigues, P., Gomes, M.G., Rebelo, C., 2007. Drug resistance in tuberculosis-a reinfection model. Theor. Popul. Biol. 71, 196–212.

    Article  MATH  Google Scholar 

  • Saltelli, A., Chan, K., Scott, M. (Eds.), 2000. Sensitivity Analysis, Probability and Statistics Series. Wiley, New York.

    MATH  Google Scholar 

  • Schaaf, H.S., Nel, E.D., Beyers, N., Gie, R.P., Scott, F., Donald, P.R., 1996. A decade of experience with Mycobacterium tuberculosis culture from children: a seasonal influence of children tuberculosis. Tuber. Lung Dis. 77, 43–46.

    Article  Google Scholar 

  • Sharomi, O., Podder, C.N., Gumel, A.B., Song, B., 2008. Mathematical analysis of the transmission dynamics of HIV/TB coinfection in the presence of treatment. Math. Biosci. Eng. 5, 145–174.

    MATH  MathSciNet  Google Scholar 

  • Smith, H.L., 1995. Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, Mathematical Surveys and Monographs, vol. 41. Am. Math. Soc., Providence.

    MATH  Google Scholar 

  • Smith, H.L., Walman, P., 1995. The Theory of the Chemostat. Cambridge University Press, Cambridge.

    Book  MATH  Google Scholar 

  • Thieme, H.R., 1992. Convergence results and a Poincaré–Bendison trichotomy for asymptotical autonomous differential equations. J. Math. Biol. 30, 755–763.

    Article  MATH  MathSciNet  Google Scholar 

  • Thorpe, L.E., Frieden, T.R., Laserson, K.F., Wells, C., Khatri, G.R., 2004. Seasonality of tuberculosis in India: is it real and what does it tell us? Lancet 364, 1613–1614.

    Article  Google Scholar 

  • Van Den Driessche, P., Watmough, J., 2002. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180, 29–48.

    Article  MATH  MathSciNet  Google Scholar 

  • Wang, W., Zhao, X.-Q., 2008. Threshold dynamics for compartmental epidemic models in periodic environments. J. Dyn. Differ. Equ. 20, 699–717.

    Article  MATH  Google Scholar 

  • Wang, L., Liu, J., Chin, D.P., 2007. Progress in tuberculosis control and the evolving public health system in China. Lancet 369, 691–696.

    Article  Google Scholar 

  • WHO, 2006. Global tuberculosis control. WHO report. WHO/HTM/TB/20-06.362. Geneva: World Health Organization.

  • WHO, 2007. Tuberculosis Fact Sheet. http://www.who.int/features/factfiles/tb_facts/en/index1.html.

  • Zhang, F., Zhao, X.-Q., 2007. A periodic epidemic model in a patchy environment. J. Math. Anal. Appl. 325, 496–516.

    Article  MATH  MathSciNet  Google Scholar 

  • Zhao, X.-Q., 2003. Dynamical Systems in Population Biology. Springer, New York.

    MATH  Google Scholar 

  • Zhou, Y., Khan, K., Feng, Z., Wu, J., 2008. Projection of tuberculosis incidence with increasing immigration trends. J. Theor. Biol. 254, 215–228.

    Article  Google Scholar 

  • Ziv, E., Daley, C.L., Blower, S.M., 2001. Early therapy for latent tuberculosis infection. Am. J. Epidemiol. 153, 381–385.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luju Liu.

Additional information

Research was supported in part by the Chinese Government Scholarship and the Canada–China Thematic Program on Disease Modeling, funded by the Networks of Centres of Excellence and the International Research Development Centre (LL); by the NSERC of Canada and the MITACS of Canada (X-QZ); and by the National Natural Science Foundation of China-NSFC10871122 (YZ).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, L., Zhao, XQ. & Zhou, Y. A Tuberculosis Model with Seasonality. Bull. Math. Biol. 72, 931–952 (2010). https://doi.org/10.1007/s11538-009-9477-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-009-9477-8

Keywords

Navigation