Skip to main content

Advertisement

Log in

Intraobserver and interobserver variability in the calculation of apparent diffusion coefficient (ADC) from diffusion-weighted magnetic resonance imaging (DW-MRI) of breast tumours

Variabilità intra-osservatore e inter-osservatore nel calcolo del coefficiente di diffusione apparente (ADC) con risonanza magnetica pesata in diffusione (RM-DW) nei tumori della mammella

  • Breast Radiology / Senologia
  • Published:
La radiologia medica Aims and scope Submit manuscript

Abstract

Purpose

This study evaluated intraobserver and interobserver variability in the measurement of apparent diffusion coefficient (ADC) values in breast carcinomas.

Materials and methods

Twenty-eight patients with solid breast lesions >10 mm underwent conventional contrast-enhanced magnetic resonance imaging (MRI) and diffusion-weighted MRI (DW-MRI). Two observers (expert and trainee) segmented the lesion from the surrounding breast tissue on DW images with high b-value (1,000 s/mm2). This analysis was repeated by the expert reader after 6 months. Volumes were analysed to obtain mean, median and standard deviation (SD) of the ADC values. Interobserver and intraobserver variation was analysed using the Bland-Altman graph.

Results

All lesions were breast carcinomas, with a mean ADC value of 1.07 × 10−3 mm2/s. The mean of the differences was 0.012 × 10−3 mm2/s, corresponding to an intraobserver variability of 1.1% (limits of agreement: −5%/+8%). The mean interobserver difference was 0.022 × 10−3 mm2/s, corresponding to an interobserver variability of 2% (limits of agreement: −9%/+14%).

Conclusions

We found a low intraobserver and interobserver variability in calculating ADC in breast carcinomas, which supports its potential use in routine clinical practice.

Riassunto

Obiettivo

Obiettivo del nostro lavoro è stato determinare la variabilità intra-osservatore e inter-osservatore nel calcolo del coefficiente di diffusione apparente (ADC) nei carcinomi mammari (CM).

Materiali e metodi

Ventotto pazienti con lesioni mammarie solide >10 mm sono state sottoposte a risonanza magnetica (RM) convenzionale con mezzo di contrasto e a RM pesata in diffusione (RM-DW). Due osservatori hanno isolato la lesione dal tessuto mammario circostante nelle sequenze con elevata pesatura in diffusione (b-value=1000 s/mm2); tale analisi è stata ripetuta da un osservatore dopo 6 mesi. Per i volumi ottenuti sono state calcolate media, mediana e deviazione standard dell’ADC. La variabilità intra-osservatore e la variabilità inter-osservatore sono state valutate tramite il metodo di Bland e Altman.

Risultati

Tutte le lesioni sono risultate CM, con un valore medio di ADC di 1,07×10−3 mm2/s. è stata calcolata una media delle differenze di 0,012×10−3 mm2/s, corrispondente ad una variabilità intra-osservatore di 1,1% (limiti di accordo −5%/+8%). È stata calcolata una media delle differenze di 0,022×10−3 mm2/s, corrispondente ad una variabilità inter-osservatore di 2% (limiti di accordo di −9%/+14%).

Conclusioni

È stata osservata una bassa variabilità intraosservatore e inter-osservatore per il calcolo dell’ADC nei CM, la quale supporta un suo possibile utilizzo nella routine clinica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References/Bibliografia

  1. Sardanelli F, Giuseppetti GM, Canavese G et al (2008) Indications for breast magnetic resonance imaging. Consensus document “Attualità in senologia”, Florence. Radiol Med 113:1085–1095

    Article  PubMed  CAS  Google Scholar 

  2. Perfetto F, Fiorentino F, Urbano F et al (2009) Adjunctive diagnostic value of MRI in the breast radial scar. Radiol Med 114:757–770

    Article  PubMed  CAS  Google Scholar 

  3. Kuhl CK (2006) Concepts for differential diagnosis in breast MR imaging. Magn Reson Imaging Clin N Am 14:305–328

    Article  PubMed  Google Scholar 

  4. Ikeda DM, Hylton NM, Kuhl CK (2003) Breast Imaging Reporting and Data System, BiRADS: magnetic resonance imaging, ACR, Reston (VA)

  5. Guo Y, Cai YQ, Cai ZL et al (2002) Differentiation of clinically benign and malignant breast lesions using diffusion-weighted imaging. J Magn Reson Imaging 16:172–178

    Article  PubMed  Google Scholar 

  6. Sinha S, Lucas-Quesada FA, Sinha U et al (2002) In vivo diffusion-weighted MRI of the breast: potential for lesion characterization. J Magn Reson Imaging 15:693–704

    Article  PubMed  Google Scholar 

  7. Woodhams R, Matsunaga K, Iwabuchi K et al (2005) Diffusion-weighted imaging of malignant breast tumors: the usefulness of apparent diffusion coefficient (ADC) value and ADC map for the detection of malignant breast tumors and evaluation of cancer extension. J Comput Assist Tomogr. 29:644–649

    Article  PubMed  Google Scholar 

  8. Kim SH, Cha ES, Kim HS et al (2009) Diffusion-weighted imaging of breast cancer: correlation of the apparent diffusion coefficient value with prognostic factors. J Magn Reson Imaging 30:615–620

    Article  PubMed  Google Scholar 

  9. Pickles MD, Gibbs P, Lowry M, Turnbull LW (2006) Diffusion changes precede size reduction in neoadjuvant treatment of breast cancer. Magn Reson Imaging 24:843–847

    Article  PubMed  Google Scholar 

  10. Yankeelov TE, Lepage M, Chakravarthy A et al (2007) Integration of quantitative DCE-MRI and ADC mapping to monitor treatment response in human breast cancer: initial results. Magn Reson Imaging 25:1–13

    Article  PubMed  Google Scholar 

  11. Tsushima Y, Takahashi-Taketomi A, Endo K (2009) Magnetic resonance (MR) differential diagnosis of breast tumors using apparent diffusion coefficient (ADC) on 1.5-T. Magn Reson Imaging 30:249–255

    Article  Google Scholar 

  12. Rubesova E, Grell AS, De Maertelaer (2006) Quantitative diffusion imaging in breast cancer: a clinical prospective study. J Magn Reson Imaging 24:319–324

    Article  PubMed  Google Scholar 

  13. ftp://medical.nema.org/medical/dicom/2009. Last access October 2010

  14. Abramoff MD, Magelhaes, PJ, Ram SJ (2004) Image Processing with Image J. Biophotonics International 11:36–42

    Google Scholar 

  15. Smith SM, Jenkinson M, Woolrich MW et al (2004) Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage 23(S1):208–219

    Article  Google Scholar 

  16. Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Petralia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petralia, G., Bonello, L., Summers, P. et al. Intraobserver and interobserver variability in the calculation of apparent diffusion coefficient (ADC) from diffusion-weighted magnetic resonance imaging (DW-MRI) of breast tumours. Radiol med 116, 466–476 (2011). https://doi.org/10.1007/s11547-011-0616-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11547-011-0616-z

Keywords

Parole chiave

Navigation