Skip to main content
Log in

Toward image-guided robotic surgery: determining intrinsic accuracy of the da Vinci robot

  • Original article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

The use of robotics in medicine has been growing in recent years. The introduction of specialized robots for surgery such as the daVinci (Intuitive Surgical, Sunnyvale, CA, USA) has largely motivated this growth. The currently available robotic-assisted surgery systems rely only on direct vision through the use of a laparoscopic camera for surgical guidance. While these cameras provide a stereoscopic view of the surface, they are incapable of showing beneath the surgical surface. In other surgical developments, image guidance has become an integral part of navigation and planning, allowing understanding of the locations beneath the surgical plane. As an early step in the development of a robotic image-guided surgical (RIGS) system, the physical limitations of a surgical robot must be assessed. In this paper the accuracy and the precision of the daVinci surgical system are quantified. It is shown that the daVinci system can successfully localize a point with an approximate fiducial localization error (FLE) of 1 mm. This FLE value demonstrates that the daVinci is within the accuracy limits of the other commonly used surgical localizers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Davies BL, Hibberd RD, Ng WS, Timoney AG, Wickham JE (1991) The development of a surgeon robot for prostatectomies. Proc Inst Mech Eng [H] 205(1):35–38

    CAS  Google Scholar 

  2. Drake JM, Joy M, Goldenberg A, Kreindler D (1991) Computer- and robot-assisted resection of thalamic astrocytomas in children. Neurosurgery 29(1):27–33

    Article  PubMed  CAS  Google Scholar 

  3. Benabid AL, Cinquin P, Lavalle S, Lebas JF, Demongeot J, Derougemont J (1987) Computer-driven robot for stereotactic surgery connected to Ct Scan and magnetic-resonance imaging—technological design and preliminary-results. Appl Neurophysiol 50(1–6):153–154

    PubMed  CAS  Google Scholar 

  4. Kwoh YS, Hou J, Jonckheere EA, Hayati S (1988) A robot with improved absolute positioning accuracy for ct guided stereotactic Brain surgery. IEEE Trans Biomed Eng 35(2):153–160

    Article  PubMed  CAS  Google Scholar 

  5. Michael D, Diodato M, Sunil M Prosad M, Mary E Klingensmith M, Ralph J Damiano M (2004) Robotics in surgery. Curr Probl Surg 41(9):752–810

    Article  Google Scholar 

  6. Patriciu A, Stoianovici D, Whitcomb LL, Jarrett T, Mazilu D, Stanimir A, Iordachita I, Anderson J, Taylor R, Kavoussi LR (2000) Motion-based robotic instrument targeting under C-Arm fluoroscopy. Medical image computing and computer-assisted intervention—miccai 2000, Vol 1935. Lecture Notes in Computer Science, Springer, Berlin, pp 988–998

  7. Stoianovici D, Whitcomb LL, Anderson JH, Taylor RH, Kavoussi LR (1998) A modular surgical robotic system for image guided percutaneous procedures, MICCAI Lect Notes Comput Sci, PP 404–410

  8. Cadeddu JA, Stoianovici D, Chen RN, Moore RG, Kavoussi LR (1998) Stereotactic mechanical percutaneous renal access. J Endourol 12(2):121–125

    Article  PubMed  CAS  Google Scholar 

  9. Bauer J, Lee BR, Stoianovici D, Bishoff JT, Micali S, Micali F, Kavoussi LR (2001) Remote percutaneous renal access using a new automated telesurgical robotic system. Telemed J E-Health 7(4):341–346

    Article  PubMed  CAS  Google Scholar 

  10. Kim HL, Schulam P (2004) The PAKY, HERMES, AESOP, ZEUS, and da Vinci robotic systems. Urol Clin North Am 31(4):659–669

    Article  PubMed  Google Scholar 

  11. Yanof J, Haaga J, Klahr P, Bauer C, Nakamoto D, Chaturvedi A, Bruce R (2001) CT-integrated robot for interventional procedures: preliminary experiment and computer-human interfaces. Comput Aided Surg 6(6):352–359

    Article  PubMed  CAS  Google Scholar 

  12. Wei Z, Wan G, Gardi L, Mills G, Downey D, Fenster A (2004) Robot-assisted 3D-TRUS guided prostate brachytherapy: system integration and validation. Med Phys 31(3):539–548

    Article  PubMed  Google Scholar 

  13. Decking J, Theis C, Achenbach T, Roth E, Nafe B, Eckardt A (2004) Robotic total knee arthroplasty: the accuracy of CT-based component placement. Acta Orthop Scand 75(5):573–579

    Article  PubMed  Google Scholar 

  14. Brandt G, Zimolong A, Carrat L, Merloz P, Staudte HW, Lavallee S, Radermacher K, Rau G (1999) CRIGOS: a compact robot for image-guided orthopedic surgery. IEEE Trans Inf Technol Biomed 3(4):252–260

    Article  PubMed  CAS  Google Scholar 

  15. Leven J, Burschka D, Kumar R, Zhang G, Blumenkranz S, Dai XD, Awad M, Hager GD, Marohn M, Choti M, Hasser C, Taylor RH (2005) DaVinci canvas: a telerobotic surgical system with integrated, robot-assisted, laparoscopic ultrasound capability. Med Image Comput Comput Assist Interv Int Conf Med Image Comput Comput Assist Interv 8(Pt 1):811–818

  16. Li QH, Zamorano L, Pandya A, Perez R, Gong J, Diaz F (2002) The application accuracy of the NeuroMate robot—a quantitative comparison with frameless and frame-based surgical localization systems. Comput Aided Surg 7(2):90–98

    Article  PubMed  Google Scholar 

  17. Kettenbach J, Kronreif G, Figl M, Furst M, Birkfellner W, Hanel R, Bergmann H (2005) Robot-assisted biopsy using ultrasound guidance: initial results from in vitro tests. Eur Radiol 15(4):765–771

    Article  PubMed  Google Scholar 

  18. Badani KK, Bhandari A, Tewari A, Menon M (2005) Comparison of two-dimensional and three-dimensional suturing: is there a difference in a robotic surgery setting? J Endourol 19(10):1212–1215

    Article  PubMed  Google Scholar 

  19. Fichtinger G, DeWeese TL, Patriciu A, Tanacs A, Mazilu D, Anderson JH, Masamune K, Taylor RH, Stoianovici D (2002) System for robotically assisted prostate biopsy and therapy with intraoperative CT guidance. Acad Radiol 9(1):60–74

    Article  PubMed  Google Scholar 

  20. Amin DV, Lunsford LD (2004) Volumetric resection using the SurgiScope: a quantitative accuracy analysis of robot-assisted resection. Stereotact Funct Neurosurg 82(5–6):250–253

    Article  PubMed  Google Scholar 

  21. Fitzpatrick JM, West JB (2001) The distribution of target registration error in rigid-body point-based registration. IEEE Trans Med Imaging 20(9):917–927

    Article  PubMed  CAS  Google Scholar 

  22. Stefansic JD, Bass WA, Hartmann SL, Beasley RA, Sinha TK, Cash DM, Herline AJ, Galloway RL (2002) Design and implementation of a PC-based image-guided surgical system. Comput Methods Programs Biomed 69(3):211–224

    Article  PubMed  Google Scholar 

  23. Beutel J, Kundel H, Van Metter RL, Sonka M, Fitzpatrick M, Kim Y, Horii SC (2000) Handbook of medical imaging. SPIE Press, Bellingham, WA

    Google Scholar 

  24. Fitzpatrick JM, West JB, Maurer CR Jr (1998) Predicting error in rigid-body point-based registration. IEEE Trans Med Imaging 17(5):694–702

    Article  PubMed  CAS  Google Scholar 

  25. Wiles AD, Thompson DG, Frantz DD (2004) Accuracy assessment and interpretation for optical tracking systems. SPIE, San Diego, CA

    Google Scholar 

  26. Birkfellner W, Watzinger F, Wanschitz F, Enislidis G, Kollmann C, Rafolt D, Nowotny R (1998) Systematic distortions in magnetic position digitizers. Med Phys 25(11):2242–2248

    Article  PubMed  CAS  Google Scholar 

  27. Wagner A, Schicho K, Birkfellner W, Figl M, Seemann R, Konig F, Kainberger F, Ewers R (2002) Quantitative analysis of factors affecting intraoperative precision and stability of optoelectronic and electromagnetic tracking systems. Med Phys 29(5):905–912

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Kwartowitz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kwartowitz, D.M., Herrell, S.D. & Galloway, R.L. Toward image-guided robotic surgery: determining intrinsic accuracy of the da Vinci robot. Int J CARS 1, 157–165 (2006). https://doi.org/10.1007/s11548-006-0047-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-006-0047-3

Keywords

Navigation