Skip to main content
Log in

Actinomycetales bacteria from a spruce stand: Characterization and effects on growth of root symbiotic and plant parasitic soil fungi in dual culture

  • Published:
Mycological Progress Aims and scope Submit manuscript

Abstract

The rhizosphere, the narrow zone of soil around living roots, is characterized by root exudates which attract soil microorganisms. Most importantly, certain soil fungi establish symbiotic interactions with fine roots which enhance nutrient availability for the plant partner (mycorrhiza). The establishment of such a symbiosis can be affected by soil bacteria. In this study we isolated Gram-positive soil bacteria from the rhizosphere of a spruce stand rich with fly agaric (Amanita muscaria) fruiting bodies. Using a coculture technique in Petri dishes, bacterial isolates were characterized by their effect on the growth of fungal hyphae. A group of bacterial strains were identified which significantly promoted growth of fly agaric hyphae. One of these strains was shown to additionally inhibit growth of pathogenic fungi such as Armillaria obscura (wide host range) and Heterobasidion annosum (causes wood decay in conifers). Taxonomic characterization of the effective bacterial isolates by their morphological appearance, by the analysis of diaminopimelic acid, cell wall sugars, and DNA sequencing (16S rDNA) identified them as actinomycetes, some of which are not yet contained in data banks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bending GD, Poole EJ, Whipps JM, Read DJ (2002) Characterisation of bacteria from Pinus sylvestris-Suillus luteus mycorrhizas and their effects on root-fungus interactions and plant growth. — FEMS Microbiology Ecolology 39(3): 219–227.

    CAS  Google Scholar 

  • Cummins CS, Harris H (1956) The chemical composition of the cell wall in some Gram-positive bacteria and its possible value as a taxonomic character. — Journal of General Microbiology 14: 583–600.

    CAS  PubMed  Google Scholar 

  • Curl EA, Truelove B (1986) The Rhizosphere. p. 1–8. Springer, Berlin.

    Google Scholar 

  • Dunstan WA, Malajczuk N, Dell B (1998) Effects of bacteria on mycorrhizal development and growth of container grown Eucalyptus diversicolor F. Muell. seedlings. — Plant and Soil 201: 241–249.

    Article  CAS  Google Scholar 

  • Founoune H, Duponnois R, Ba AM, Sall S, Branget I, Lorquin J, Neyra M, Chote JL (2002) Mycorrhiza helper bacteria stimulate ectomycorrhizal symbiosis of Acacia holoserica with Pisolithus alba. — New Phytolologist 153: 81–89.

    Google Scholar 

  • Frey-Klett P, Pierrat JC, Garbaye J (1997) Location and survival of Mycorrhiza helper Pseudomonas fluorescens during establishment of ectomycorrhizal symbiosis between Laccaria bicolor and Douglas Fir. — Applied and Environmental Microbiology 63: 139–144.

    CAS  Google Scholar 

  • Frey-Klett P, Chavatte M, Courriers S, Martinotii G, Pierrat JC, Garbaye J (2000) Ectomycorrhizosphere effect of the Douglas fir-Laccaria bicolor symbiosis on the functional diversity of fluorescent pseudomonads in a forest nursery. 5th International Workshop on PGPR, Cordoba, Argentine. http://www.ag.auburn.edu/argentina/pdfmanuscripts/freyklett.pdf

  • Garbaye J (1994) Helper bacteria: a new dimension to the mycorrhizal symbiosis. — New Phytolologist 128: 197–210.

    Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free living bacteria. — Canadian Journal of Microbiology 41: 109–117.

    CAS  Google Scholar 

  • Green H, Larsen J, Olsson PA, Jensen DF, Jakobsen I (1999) Suppression of the Biocontrol Agent Trichoderma harzianum by Mycelium of the Mycorrhizal Fungus Glomus intraradices in Root-free Soil. — Applied and Environmental Microbiology 65: 1428–1434.

    CAS  PubMed  Google Scholar 

  • Hampp R, Schaeffer C (1998) Mycorrhiza — Carbohydrate and energy metabolism. In Varma A, Hock B (eds) Mycorrhiza — structure, function, molecular biology and biotechnology, pp. 273–303. Springer, Berlin.

    Google Scholar 

  • Hampp R, Maier A (2004) Interaction between soil bacteria and ectomycorrhiza-forming fungi. In Varma A, Abbott L, Werner D and Hampp R (eds) Plant Surface Microbiology, pp. 197–210. Springer, Berlin.

    Google Scholar 

  • Hiltner L (1904) Über neuere Erfahrungen und Probleme auf dem Gebiet der Bodenbakteriologie und unter besonderer Berücksichtigung der Gründüngung und Brache. — Arbeiten der Deutschen Landwirtschaftlichen Gesellschaft 98: 59–78.

    Google Scholar 

  • Hirsch CF, Christensen DL (1983) Novel method for selective isolation of Actinomycetes. — Applied and Environmental Microbiology 46(4): 925–929.

    CAS  PubMed  Google Scholar 

  • Hobbie SE (1992) Effects of plant species on nutrient cycling. — Trends in Ecology and Evolution 7: 336–339.

    Article  Google Scholar 

  • Hütter R (1967) Systematik der Streptomyceten. p. 1–382. Karger, Basel.

    Google Scholar 

  • Kataoka M, Ueda K, Kudo T, Seki T, Yoshida T (1997) Application of the variable region in 16S rDNA to create an index for rapid species identification in the genus Streptomyces. — FEMS Microbiology Letters 151: 249–255.

    CAS  PubMed  Google Scholar 

  • Kloepper JW, Lifshitz R, Zablotowicz RM (1989) Free-living bacterial inocula for enhancing crop productivity. — Trends in Biotechnology 7: 39–43.

    Article  Google Scholar 

  • Lechevalier MP, Lechevalier HA (1968) Composition of whole cell hydrolysates as a criterion in the classification of aerobic actinomycetales. In Prauser H (ed) The Actinomycetales, pp. 311–316. VEB-Fischer, Jena.

    Google Scholar 

  • Maidak BL, Cole JR, Lilburn TG, Parker CT, Saxman PR, Farris RJ, Garrity GM, Olsen GJ, Schmdt TM, Tiedje JM (2001) The RDP-II (Ribosomal Database Project) — Nucleic Acids Research 29(1): 173–174.

    Article  CAS  PubMed  Google Scholar 

  • Meyer JR, Linderman RG (1986) Response of subterranean clover to dual inoculation with vesicular-arbuscular mycorrhizal fungi and a plant growth-promoting bacterium, Pseudomonas putida. — Soil Biology and Biochemistry 18: 185–190.

    CAS  Google Scholar 

  • Pedersen EA, Reddy MS, Chakravarty P (1999) Effect of three species of bacteria on damping-off, root rot development, and ectomycorrhizal colonization of lodgepole pine and white seedlings. — European Journal of Forest Pathology 29: 123–134.

    Google Scholar 

  • Poole EJ, Bending GD, Whipps JM, Read DJ (2001) Bacteria associated with Pinus sylvestris-Lactarius rufus ectomycorrhizas and their effects on mycorrhiza formation in vitro. — New Phytologist 151: 743–751.

    Article  Google Scholar 

  • Primrose SB, Dilworth MJ (1976) Ethylene Production by Bacteria. — Journal of General Microbiology 93: 177–181.

    CAS  PubMed  Google Scholar 

  • Probanza A, Lucas JA, Guiterrez-Mañero JF (1996) The influence of native rhizobacteria on European alder (Alnus glutinosa (L.) Gaertn.) growth. I. Characterization of growth promoting and growth inhibiting bacterial strains. — Plant and Soil 182: 59–66.

    Article  CAS  Google Scholar 

  • Probanza A, Mateos JL, Lucas Garcia JA, Ramos B, de Felipe MR, Guiterrez MaHero JF (2001) Effects of inoculation with PGPR Bacillus and Pisolithus tinctorius on Pinus pinea L. growth, bacterial rhizosphere colonialization, and mycorrhizal infection. — Microbial Ecology 41: 140–148.

    CAS  PubMed  Google Scholar 

  • Ramos CP, Foster G, Collins MD (1997) Phylogenetic Analysis of the Genus Actinomyces Based on 16S rRNA Gene Sequences: Description of Arcanobacterium phocae sp. nov., Arcanobacterium bernardiae comb. nov., and Arcanobacterium pyogenes comb. nov. — International Journal of Systematic Bacteriology 47(1): 46–53.

    CAS  PubMed  Google Scholar 

  • Schelkle M, Peterson RL (1996) Supression of common root pathogenes by helper bacteria and ectomycorrhizal fungi in vitro. — Mycorrhiza 6: 481–485.

    Article  Google Scholar 

  • Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. — International Journal of Systematic Bacteriology 16: 313–340

    Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. p. 1–605. Academic Press, Cambridge, UK.

    Google Scholar 

  • Söderström B (1992) Ecological potential of ectomycorrhizal mycelium. In Read DJ, Lewis DH, Fitter AH, Alexander IJ (eds) Mycorrhizas in ecosystems, pp. 77–83. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Staneck JL, Roberts GD (1974) Simplified approach to the identification of aerobic actinomycetes by thin-layer chromatography. — Applied Microbiology 28: 226–231

    CAS  PubMed  Google Scholar 

  • Timonen S, Jørgensen KS, Haathela K, Sen R (1998) Bacteria cummunity structure at defined locations of Pinus sylvestris-Suillus bovinus and Pinus sylvestris-Paxillus involutus mycorrhizospheres in dry pine forest humus and nursery peat. — Canadian Journal of Microbiology 44: 499–513.

    Article  CAS  Google Scholar 

  • Tindall BI (1990) Lipid composition of Halobacterium lacusprofundi. — FEMS Microbiology Letters 66: 199–202.

    Article  CAS  Google Scholar 

  • Visscher HR (1979) Fructification of A. bisporus (Lge) IMb. in relation to the relevant microflora in the casing soil. — Mushroom Science 10: 641–664.

    Google Scholar 

  • Whipps JM, Lynch JM (1986) The influence of rhizosphere on crop productivity. — Advanced Microbial Ecology 9: 187–244.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Maier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maier, A., Riedlinger, J., Fiedler, HP. et al. Actinomycetales bacteria from a spruce stand: Characterization and effects on growth of root symbiotic and plant parasitic soil fungi in dual culture. Mycol Progress 3, 129–136 (2004). https://doi.org/10.1007/s11557-006-0083-y

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11557-006-0083-y

Keywords

Navigation