Skip to main content
Log in

TGF-β3 is expressed in taste buds and inhibits proliferation of primary cultured taste epithelial cells

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Transforming growth factor-βs (TGF-βs), expressed in various tissues, play important roles in embryonic development and adult tissue homeostasis through their effects on cell proliferation, cell differentiation, cell death, and cell motility. However, expression of TGF-β signaling components and their biological effect on taste epithelia has not been elucidated. We performed expression analysis of TGF-β signaling components in taste epithelia and found that the TGF-β3 mRNA was specifically expressed in taste buds. Type II TGF-βs receptor (TβR-II) mRNA was specifically expressed in the tongue epithelia including the taste epithelia. To elucidate the biological function of TGF-β3 in taste epithelia, we performed proliferation assay with primary cultured taste epithelial cells. In the presence of TGF-β3, percentage of BrdU-labeled cells decreased significantly, suggesting that the TGF-β3 inhibited the proliferation of cultured taste epithelial cells through inhibiting cell-cycle entry into S phase. By quantitative reverse transcription–polymerase chain reaction assay, we found that the TGF-β3 resulted in an increased level of expression of p15Ink4b and p21Cip1, suggesting that the TGF-β3 inhibited the taste epithelial cell proliferation through inhibiting G1cyclin–Cdk complexes. Taken together, these results suggested that the TGF-β3 may regulate taste epithelial cell homeostasis through controlling cell proliferation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.

Similar content being viewed by others

References

  • Ahmed S.; Liu C. C.; Nawshad A. Mechanisms of palatal epithelial seam disintegration by transforming growth factor (TGF) beta3. Dev. Biol. 309: 193–207; 2007.

    Article  CAS  PubMed  Google Scholar 

  • Beidler L. M.; Smallman R. L. Renewal of cells within taste buds. J. Cell Biol. 27: 263–272; 1965.

    Article  CAS  PubMed  Google Scholar 

  • Chen Z.; Li D. Q.; Tong L.; Stewart P.; Chu C.; Pflugfelder S. C. Targeted inhibition of p57 and p15 blocks transforming growth factor beta-inhibited proliferation of primary cultured human limbal epithelial cells. Mol. Vis. 12: 983–994; 2006.

    CAS  PubMed  Google Scholar 

  • Farbman A. I. Renewal of taste bud cells in rat circumvallate papillae. Cell Tissue Kinet. 13: 349–357; 1980.

    CAS  PubMed  Google Scholar 

  • Hamamichi R.; Asano-Miyoshi M.; Emori Y. Taste bud contains both short-lived and long-lived cell populations. Neuroscience 141: 2129–2138; 2006.

    Article  CAS  PubMed  Google Scholar 

  • Kaartinen V.; Voncken J. W.; Shuler C.; Warburton D.; Bu D.; Heisterkamp N.; Groffen J. Abnormal lung development and cleft palate in mice lacking TGF-beta 3 indicates defects of epithelial–mesenchymal interaction. Nat. Genet. 11: 415–421; 1995.

    Article  CAS  PubMed  Google Scholar 

  • Massague J.; Blain S. W.; Lo R. S. TGFbeta signaling in growth control, cancer, and heritable disorders. Cell 103: 295–309; 2000.

    Article  CAS  PubMed  Google Scholar 

  • Massague J.; Gomis R. R. The logic of TGFbeta signaling. FEBS Lett. 580: 2811–2820; 2006.

    Article  CAS  PubMed  Google Scholar 

  • Millan F. A.; Denhez F.; Kondaiah P.; Akhurst R. J. Embryonic gene expression patterns of TGF beta 1, beta 2 and beta 3 suggest different developmental functions in vivo. Development 111: 131–143; 1991.

    CAS  PubMed  Google Scholar 

  • Miura H.; Kato H.; Kusakabe Y.; Tagami M.; Miura-Ohnuma J.; Ninomiya Y.; Hino A. A strong nerve dependence of sonic hedgehog expression in basal cells in mouse taste bud and an autonomous transcriptional control of genes in differentiated taste cells. Chem. Senses 29: 823–831; 2004.

    Article  CAS  PubMed  Google Scholar 

  • Miura H.; Kusakabe Y.; Harada S. Cell lineage and differentiation in taste buds. Arch. Histol. Cytol. 69: 209–225; 2006.

    Article  CAS  PubMed  Google Scholar 

  • Miura H.; Kusakabe Y.; Sugiyama C.; Kawamatsu M.; Ninomiya Y.; Motoyama J.; Hino A. Shh and Ptc are associated with taste bud maintenance in the adult mouse. Mech. Dev. 106: 143–145; 2001.

    Article  CAS  PubMed  Google Scholar 

  • Morris-Wiman J.; Sego R.; Brinkley L.; Dolce C. The effects of sialoadenectomy and exogenous EGF on taste bud morphology and maintenance. Chem. Senses 25: 9–19; 2000.

    Article  CAS  PubMed  Google Scholar 

  • Nguyen A. V.; Pollard J. W. Transforming growth factor beta3 induces cell death during the first stage of mammary gland involution. Development 127: 3107–3118; 2000.

    CAS  PubMed  Google Scholar 

  • Niimi H.; Pardali K.; Vanlandewijck M.; Heldin C. H.; Moustakas A. Notch signaling is necessary for epithelial growth arrest by TGF-beta. J. Cell Biol 176: 695–707; 2007.

    Article  CAS  PubMed  Google Scholar 

  • Nosrat C. A.; Ebendal T.; Olson L. Differential expression of brain-derived neurotrophic factor and neurotrophin 3 mRNA in lingual papillae and taste buds indicates roles in gustatory and somatosensory innervation. J. Comp. Neurol. 376: 587–602; 1996.

    Article  CAS  PubMed  Google Scholar 

  • Okubo T.; Clark C.; Hogan B. L. Cell lineage mapping of taste bud cells and keratinocytes in the mouse tongue and soft palate. Stem Cells 27: 442–450; 2009.

    Article  CAS  PubMed  Google Scholar 

  • Ozdener H.; Yee K. K.; Cao J.; Brand J. G.; Teeter J. H.; Rawson N. E. Characterization and long-term maintenance of rat taste cells in culture. Chem. Senses 31: 279–290; 2006.

    Article  CAS  PubMed  Google Scholar 

  • Pelton R. W.; Saxena B.; Jones M.; Moses H. L.; Gold L. I. Immunohistochemical localization of TGF beta 1, TGF beta 2, and TGF beta 3 in the mouse embryo: expression patterns suggest multiple roles during embryonic development. J. Cell Biol. 115: 1091–1105; 1991.

    Article  CAS  PubMed  Google Scholar 

  • Perez C. A.; Huang L.; Rong M.; Kozak J. A.; Preuss A. K.; Zhang H.; Max M.; Margolskee R. F. A transient receptor potential channel expressed in taste receptor cells. Nat. Neurosci. 5: 1169–1176; 2002.

    Article  CAS  PubMed  Google Scholar 

  • Piek E.; Heldin C. H.; Ten Dijke P. Specificity, diversity, and regulation in TGF-beta superfamily signaling. Faseb J. 13: 2105–2124; 1999.

    CAS  PubMed  Google Scholar 

  • Proetzel G.; Pawlowski S. A.; Wiles M. V.; Yin M.; Boivin G. P.; Howles P. N.; Ding J.; Ferguson M. W.; Doetschman T. Transforming growth factor-beta 3 is required for secondary palate fusion. Nat. Genet. 11: 409–414; 1995.

    Article  CAS  PubMed  Google Scholar 

  • Reynisdottir I.; Polyak K.; Iavarone A.; Massague J. Kip/Cip and Ink4 Cdk inhibitors cooperate to induce cell cycle arrest in response to TGF-beta. Genes Dev. 9: 1831–1845; 1995.

    Article  CAS  PubMed  Google Scholar 

  • Sanford L. P.; Ormsby I.; Gittenberger-De Groot A. C.; Sariola H.; Friedman R.; Boivin G. P.; Cardell E. L.; Doetschman T. TGFbeta2 knockout mice have multiple developmental defects that are non-overlapping with other TGFbeta knockout phenotypes. Development 124: 2659–2670; 1997.

    CAS  PubMed  Google Scholar 

  • Scandura J. M.; Boccuni P.; Massague J.; Nimer S. D. Transforming growth factor beta-induced cell cycle arrest of human hematopoietic cells requires p57KIP2 up-regulation. Proc. Natl. Acad. Sci. USA 101: 15231–15236; 2004.

    Article  CAS  PubMed  Google Scholar 

  • Sherr C. J.; Roberts J. M. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 13: 1501–1512; 1999.

    Article  CAS  PubMed  Google Scholar 

  • Shull M. M.; Ormsby I.; Kier A. B.; Pawlowski S.; Diebold R. J.; Yin M.; Allen R.; Sidman C.; Proetzel G.; Calvin D.; Annunziata N.; Doetschman T. Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease. Nature 359: 693–699; 1992.

    Article  CAS  PubMed  Google Scholar 

  • Soma T.; Ogo M.; Suzuki J.; Takahashi T.; Hibino T. Analysis of apoptotic cell death in human hair follicles in vivo and in vitro. J. Invest. Dermatol. 111: 948–954; 1998.

    Article  CAS  PubMed  Google Scholar 

  • Stone L. M.; Finger T. E.; Tam P. P.; Tan S. S. Taste receptor cells arise from local epithelium, not neurogenic ectoderm. Proc. Natl. Acad. Sci. USA 92: 1916–1920; 1995.

    Article  CAS  PubMed  Google Scholar 

  • Takeda M.; Suzuki Y.; Obara N.; Uchida N.; Kawakoshi K. Expression of GDNF and GFR alpha 1 in mouse taste bud cells. J. Comp. Neurol. 479: 94–102; 2004.

    Article  CAS  PubMed  Google Scholar 

  • Wu M. Y.; Hill C. S. Tgf-beta superfamily signaling in embryonic development and homeostasis. Dev. Cell 16: 329–343; 2009.

    Article  CAS  PubMed  Google Scholar 

  • Yee C.; Bartel D. L.; Finger T. E. Effects of glossopharyngeal nerve section on the expression of neurotrophins and their receptors in lingual taste buds of adult mice. J. Comp. Neurol. 490: 371–390; 2005.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors express gratitude to Dr. Yuko Kusakabe, Mr. Yoichiro Shindo, Ms. Yumiko Ito, Mr. Takeshi Ebihara, Ms. Mariko Kobayashi, Ms. Hiromi Kato, and Ms. Yuriko Hino for their help on the experiments and to the members of the Kamakura Laboratory for helpful discussions. We also thank Dr. Kaul Sunil and Shigeru Yasumoto for the critical reading of this manuscript. This work was financially supported by National Food Research Institute, MAFF Food Research Program, and the Collaborative Development of Innovative Seeds from Japan Science and Technology Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuya Ookura.

Additional information

Editor: J. Denry Sato

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakamura, Si., Kawai, T., Kamakura, T. et al. TGF-β3 is expressed in taste buds and inhibits proliferation of primary cultured taste epithelial cells. In Vitro Cell.Dev.Biol.-Animal 46, 36–44 (2010). https://doi.org/10.1007/s11626-009-9239-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-009-9239-9

Keywords

Navigation