Skip to main content
Log in

Ovine bone marrow mesenchymal stem cells: isolation and characterization of the cells and their osteogenic differentiation potential on embroidered and surface-modified polycaprolactone-co-lactide scaffolds

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

The current study was undertaken with the goal being isolation, cultivation, and characterization of ovine mesenchymal stem cells (oMSC). Furthermore, the objective was to determine whether biological active polycaprolactone-co-lactide (trade name PCL) scaffolds support the growth and differentiation of oMSC in vitro. The oMSC were isolated from the iliac crest of six merino sheep. Three factors were used to demonstrate the MSC properties of the isolated cells in detail. (1) Their ability to proliferate in culture with a spindle-shaped morphology, (2) presence of specific surface marker proteins, and (3) their capacity to differentiate into the three classical mesenchymal pathways, osteoblastic, adipogenic, and chondrogenic lineages. Furthermore, embroidered PCL scaffolds were coated with collagen I (coll I) and chondroitin sulfate (CS). The porous structure of the scaffolds and the coating with coll I/CS allowed the oMSC to adhere, proliferate, and to migrate into the scaffolds. The coll I/CS coating on the PCL scaffolds induced osteogenic differentiation of hMSC, without differentiation supplements, indicating that the scaffold also has an osteoinductive character. In conclusion, the isolated cells from the ovine bone marrow have similar morphologic, immunophenotypic, and functional characteristics as their human counterparts. These cells were also found to differentiate into multiple mesenchymal cell types. This study demonstrates that embroidered PCL scaffolds can act as a temporary matrix for cell migration, proliferation, and differentiation of oMSC. The data presented will provide a reliable model system to assess the translation of MSC-based therapy into a variety of valuable ovine experimental models under autologous settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Bierbaum S.; Douglas T.; Hanke T.; Scharnweber D.; Tippelt S.; Monsees T. K.; Funk R. H. W.; Worch H. Collageneous matrix coating on titanium implants modified with decorin and chondroitin sulfate: Characterization and influence on osteoblastic cells. J Biomed Mat Res A 1(77): 551–562; 2006.

    Article  CAS  Google Scholar 

  • Bosnakovski D.; Mizuno M.; Kim G.; Takagi S.; Okumura M.; Fujinaga T. Isolation and multilineage differentiation of bovine bone marrow mesenchymal stem cells. Cell Tissue Res 319(2): 243–53; 2005.

    Article  PubMed  Google Scholar 

  • Castano-Izquierdo H.; Alvarez-Barreto J.; van den Dolder J.; Jansen J. A.; Mikos A. G.; Sikavitsas V. I. Pre-culture period of mesenchymal stem cells in osteogenic media influences their in vivo bone forming potential. J Biomed Mater Res A 82(1): 129–38; 2007.

    PubMed  Google Scholar 

  • Chamberlain G.; Fox J.; Ashton B.; Middleton J. Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 25(11): 2739–49; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Douglas T.; Heinemann S.; Mietrach C.; Hempel U.; Bierbaum S.; Scharnweber D.; Worch H. Interactions of collagen types I and II with chondroitin sulfates A-C and their effect on osteoblast adhesion. Biomacromolecules 8(4): 1085–92; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Gugala Z.; Gogolewski S. Differentiation, growth and activity of rat bone marrow stromal cells on resorbable poly(L/DL-lactide) membranes. Biomaterials 25: 2299–2307; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Guo X.; Wang C.; Duan C.; Descamps M.; Zhao Q.; Dong L.; Lü S.; Anselme K.; Lu J.; Song Y. Q. Repair of osteochondral defects with autologous chondrocytes seeded onto bioceramic scaffold in sheep. Tissue Eng 10(11–12): 1830–40; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Hollinger J. O.; Brekke J.; Gruskin E.; Lee D. Role of bone substitutes. Clin Orthop Relat Res 324: 55–65; 1996.

    Article  PubMed  Google Scholar 

  • Hubbell J. A. Materials as morphogenetic guides in tissue engineering. Curr Opin Biotechnol 14(5): 551–8; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Hutmacher D. W. Scaffold design and fabrication technologies for engineering tissue – state of the art and future perspectives. J Biomater Sci 12(1): 107–124; 2001.

    Article  CAS  Google Scholar 

  • Hutmacher D. W.; Schantz J. T.; Lam C. X.; Tan K. C.; Lim T. C. State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective. J Tissue Eng Regen Med 1(4): 245–60; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Jackson L.; Jones D. R.; Scotting P.; Sottile V. Adult mesenchymal stem cells: differentiation potential and therapeutic applications. J Postgrad Med 53(2): 121–7; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Jones E. A.; Kinsey S. E.; English A.; Jones R. A.; Straszynski L.; Meredith D. M.; Markham A. F.; Jack A.; Emery P.; McGonagle D. Isolation and characterization of bone marrow multipotential mesenchymal progenitor cells. Arthritis Rheum 46(12): 3349–60; 2002.

    Article  PubMed  Google Scholar 

  • Kon E.; Muraglia A.; Corsi A.; Bianco P.; Marcacci M.; Martin I.; Boyde A.; Ruspantini I.; Chistolini P.; Rocca M.; Giardino R.; Cancedda R.; Quarto R. Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bones. J Biomed Mater Res 49(3): 328–37; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Li W. J.; Tuli R.; Huang X.; Laquerriere P.; Tuan R. S. Multilineage differentiation of human mesenchymal stem cells in a three-dimensional nanofibrous scaffold. Biomaterials 26(25): 5158–66; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Martin D. R.; Cox N. R.; Hathcock T. L.; Niemeyer G. P.; Baker H. J. Isolation and characterization of multipotential mesenchymal stem cells from feline bone marrow. Exp Hematol 30(8): 879–86; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Mrugala D.; Bony C.; Neves N.; Caillot L.; Fabre S.; Moukoko D.; Jorgensen C.; Noël D. Phenotypic and functional characterisation of ovine mesenchymal stem cells: application to a cartilage defect model. Ann Rheum Dis 67(3): 288–95; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Neupane M.; Chang C. C.; Kiupel M.; Yuzbasiyan-Gurkan V. Isolation and Characterization of Canine Adipose-Derived Mesenchymal Stem Cells. Tissue Eng Part A Apr 17; 2008.

  • Perel P.; Roberts I.; Sena E.; Wheble P.; Briscoe C.; Sandercock P.; Macleod M.; Mignini L. E.; Jayaram P.; Khan K. S. Comparison of treatment effects between animal experiments and clinical trials: systematic review. BMJ 334(7586): 197; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Phinney D. G.; Kopen G.; Isaacson R. L.; Prockop D. J. Plastic adherent stromal cells from the bone marrow of commonly used strains of inbred mice: variations in yield, growth, and differentiation. J Cell Biochem 72(4): 570–85; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Pittenger M. F.; Mackay A. M.; Beck S. C.; Jaiswal R. K.; Douglas R.; Mosca J. D.; Moorman M. A.; Simonetti D. W.; Craig S.; Marshak D. R. Multilineage potential of adult human mesenchymal stem cells. Science 284(5411): 143–7; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Rammelt S.; Illert T.; Bierbaum S.; Scharnweber D.; Zwipp H.; Schneiders W. Coating of titanium implants with collagen, RGD peptide and chondroitin sulfate. Biomaterials 27(32): 5561–71; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Rentsch B.; Hofmann A.; Breier A.; Rentsch C.; Scharnweber S. Embroidered and surface modified polycaprolactone-co-lactide scaffolds as bioartificial bone substitute—in vitro characterization. Annals of Biomedical Engineering, In press; 2009.

    Google Scholar 

  • Rentsch C.; Rentsch B.; Breier A.; Hofmann A.; Manthey S.; Scharnweber D.; Biewener A.; Zwipp H. Evaluation of the osteogenic potential and vascularization of 3D poly(3)hydroxybutyrate Scaffolds Subcutaneously Implanted in Nude Rats. Biomed Mater Res A, In press; 2008.

    Google Scholar 

  • Ringe J.; Kaps C.; Schmitt B.; Büscher K.; Bartel J.; Smolian H.; Schultz O.; Burmester G. R.; Häupl T.; Sittinger M. Porcine mesenchymal stem cells. Induction of distinct mesenchymal cell lineages. Cell Tissue Res 307(3): 321–7; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Salgado A. J.; Coutinho O. P.; Reis R. L. Bone tissue engineering: state of the art and future trends. Maccromol Biosci 4: 743–765; 2004.

    Article  CAS  Google Scholar 

  • Schneiders W.; Reinstorf A.; Ruhnow M.; Rehberg S.; Heineck J.; Hinterseher I.; Biewener A.; Zwipp H.; Rammelt S. Effect of chondroitin sulphate on material properties and bone remodelling around hydroxyapatite/collagen composites. J Biomed Mater Res A; Sep 5; 2007.

  • Sutherland F. W.; Perry T. E.; Yu Y.; Sherwood M. C.; Rabkin E.; Masuda Y.; Garcia G. A.; McLellan D. L.; Engelmayr Jr. G. C.; Sacks M. S.; Schoen F. J.; Mayer Jr. J. E. From stem cells to viable autologous semilunar heart valve. Circulation 111(21): 2783–91; 2005.

    Article  PubMed  Google Scholar 

  • Taipale J.; Keski-Oja J. Growth factors in the extracellular matrix. FASEB J 11(1): 51–9; 1997.

    PubMed  CAS  Google Scholar 

  • van Susante J. L. C.; Pieper J.; Buma P.; van Kuppevelt T. H.; van Beuningen H.; van Der Kraan P. M.; Veerkamp J. H.; van den Berg W. B.; Veth R. P. H. Linkage of chondroitin-sulfate to type I collagen scaffolds stimulates the bioactivity of seeded chondrocytes in vitro. Biomaterials 22(17): 2359–69; 2001.

    Article  PubMed  Google Scholar 

  • Wollenweber M.; Domaschke H.; Hanke T.; Boxberger S.; Schmack G.; Gliesche K.; Scharnweber D.; Worch H. Mimicked bioartificial matrix containing chondroitin sulfate on a textile scaffold of poly(3-hydroxybutyrate) alters the differentiation of adult human mesenchymal stem cells. Tissue Eng 12(2): 345–59; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Woodbury D.; Schwarz E. J.; Prockop D. J.; Black I. B. Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res 61(4): 364–70; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Worster A. A.; Nixon A. J.; Brower-Toland B. D.; Williams J. Effect of transforming growth factor beta1 on chondrogenic differentiation of cultured equine mesenchymal stem cells. Am J Vet Res 61(9): 1003–10; 2000.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Sächsische Aufbaubank (11633/1848) and the team of Dr. Jung and Dr. Speckl from the Animal Care Unit of the Dresden University Hospital “Carl Gustav Carus” for their cooperation in conduction of the animal experiments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C. Rentsch or R. Hess.

Additional information

Editor: J. Denry Sato

C. Rentsch & R. Hess contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rentsch, C., Hess, R., Rentsch, B. et al. Ovine bone marrow mesenchymal stem cells: isolation and characterization of the cells and their osteogenic differentiation potential on embroidered and surface-modified polycaprolactone-co-lactide scaffolds. In Vitro Cell.Dev.Biol.-Animal 46, 624–634 (2010). https://doi.org/10.1007/s11626-010-9316-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-010-9316-0

Keywords

Navigation