Skip to main content
Log in

A new human prostate carcinoma cell line, 22Rv1

  • Cellular Models
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

A cell line has been derived from a human prostatic carcinoma xenograft, CWR22R. This represents one of very few available cell lines representative of this disease. The cell line is derived from a xenograft that was serially propagated in mice after castration-induced regression and relapse of the parental, androgen-dependent CWR22 xenograft. Flow cytometric and cytogenetic analysis showed that this cell line represents one hyper DNA-diploid stem line with two clonal, evolved cytogenetic sublines. The basic karyotype is close to that of the grandparent xenograft, CWR22, and is relatively simple with 50 chromosomes. In nude mice, the line forms tumors with morphology similar to that of the xenografts, and like the parental CWR22 and CWR22R xenografts, this cell line expresses prostate specific antigen. Growth is weakly stimulated by dihydroxytestosterone and lysates are immunoreactive with androgen receptor antibody by Western blot analysis. Growth is stimulated by epidermal growth factor but is not inhibited by transforming growth factor-β1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Barranco, M. A.; Alcaraz, A.; Corral, J. M.; Sole, M.; Mallofre, C.; Llopis, J.; Rodriguez, A.; Ribal, M. J.; Alvarez-Vijande, R.; Carretero, P. Numeric alterations in chromosomes 7 and 8 detected by fluorescent in situ hybridization correlate with high-grade localized prostate cancer. Eur. Urol. 34:419–425; 1998.

    Article  PubMed  CAS  Google Scholar 

  2. Brolin, J.; Skoog, L.; Ekman, P. Immunohistochemistry and biochemistry in detection of androgen, progesterone, and estrogen receptors in benign and malignant human prostatic tissue. Prostate 20:281–295; 1992.

    Article  PubMed  CAS  Google Scholar 

  3. Chah, J. A.; Rhim, J. S. Current status of prostate cancer research: development of in vitro model systems. Int. J. Oncol. 5:1233–1242; 1994.

    CAS  Google Scholar 

  4. Cheng, L.; Sun, J.; Pretlow, T. G.; Culp, J.; Yang, N. S. CWR22 xenograft as an ex vivo human tumor model for prostate cancer gene therapy. J. Natl. Cancer Inst. 88:607–611; 1996.

    Article  PubMed  CAS  Google Scholar 

  5. Cui, J.; Deubler, D. A.; Rohr, L. R.; Zhu, X. L.; Maxwell, T. M.; Changus, J. E.; Brothman, A. R. Chromosome 7 abnormalities in prostate cancer detected by dual-color fluorescence in situ hybridization. Cancer Genet. Cytogenet. 107:51–60; 1998.

    Article  PubMed  CAS  Google Scholar 

  6. Culig, Z.; Klocker, H.; Eberle, J.; Kaspar, F.; Hobisch, A.; Cronauer, M. V.; Bartsch, G. DNA sequence of the androgen receptor in prostatic tumor cell lines and tissue specimens assessed by means of the polymerase chain reaction. Prostate 22:11–22; 1993.

    Article  PubMed  CAS  Google Scholar 

  7. Ellis, W. J.; Vessella, R. L.; Buhler, K. R.; Bladou, F.; True, L. D.; Bigler, S. A.; Curtis, D.; Lange, P. H. Characterization of a novel androgensensitive, prostate-specific antigen-producing prostatic carcinoma xenograft: LuCaP 23. Clin. Cancer Res. 2:1039–1048; 1996.

    PubMed  CAS  Google Scholar 

  8. Gingrich, J. R.; Tucker, J. A.; Walther, P. J.; Day, J. W.; Poulton, S. H.; Webb, K. S. Establishment and characterization of a new human prostatic carcinoma cell line (DuPro-1). J. Urol. 146:915–919; 1991.

    PubMed  CAS  Google Scholar 

  9. Gleave, M.; Hsieh, J. T.; Gao, C. A.; von Eschenbach, A. C.; Chung, L. W. Acceleration of human prostate cancer growth in vivo by factors produced by prostate and bone fibroblasts. Cancer Res. 51:3753–3761; 1991.

    PubMed  CAS  Google Scholar 

  10. Grasso, A. W.; Wen, D.; Miller, C. M.; Rhim, J. S.; Pretlow, T. G.; Kung, H. J. ErbB kinases and NDF signaling in human prostate cancer cells. Oncogene 15:2705–2716; 1997.

    Article  PubMed  CAS  Google Scholar 

  11. Guo, Y.; Kyprianou, N. Overexpression of transforming growth factor (TGF) beta 1 type II receptor restores TGF-beta 1 sensitivity and signaling in human prostate cancer cells. Cell Growth Differ. 9:185–193; 1998.

    PubMed  CAS  Google Scholar 

  12. Guo, Y.; Wu, Y.; Shinde, S.; Sy, M. S.; Aruffo, A.; Liu, Y. Identification of a costimulatory molecule rapidly induced by CD40L as CD44H. J. Exp. Med. 184:955–961; 1996.

    Article  PubMed  CAS  Google Scholar 

  13. Horoszewicz, J. S.; Leong, S. S.; Kawinski, E.; Karr, J. P.; Rosenthal, H.; Chu, T. M.; Mirand, E. A.; Murphy, G. P. LNCaP model of human prostatic carcinoma. Cancer Res. 43:1809–1818; 1983.

    PubMed  CAS  Google Scholar 

  14. Iizumi, T.; Yazaki, T.; Kanoh, S.; Kondo, I.; Koiso, K. Establishment of a new prostatic carcinoma cell line (TSU-Prl). J. Urol. 137:1304–1306; 1987.

    PubMed  CAS  Google Scholar 

  15. Jenkins, R. B.; Qian, J.; Lee, H. K.; Huang, H.; Hirasawa, K.; Bostwick, D. G.; Proffitt, J.; Wilber, K.; Lieber, M. M.; Liu, W., et al. A molecular cytogenetic analysis of 7q31 in prostate cancer. Cancer Res. 58:759–766; 1998.

    PubMed  CAS  Google Scholar 

  16. Kaighn, M. E.; Narayan, K. S.; Ohnuki, Y.; Lechner, J. F.; Jones, L. W. Establishment and characterization of a human prostatic carcinoma cell line (PC-3). Invest. Urol. 17:16–23; 1979.

    PubMed  CAS  Google Scholar 

  17. Katsuoka, Y.; Hoshino, H.; Shiramizu, M.; Sakabe, K.; Seiki, K. Autoradiographic and cytochemical localization of androgen in human prostatic cancer cell lines. Urology 28:228–231; 1986.

    Article  PubMed  CAS  Google Scholar 

  18. Lee, M. S.; Gakovenko, E.; Yun, J. S.; Weijerman, P. C.; Peehl, D. M.; Chen, L. S.; Rhim, J. S. Characterization of adult human prostatic cells immortalized by polybrene-induced DNA transfection with a plasmid containing an origin-defective SV40 genome. Int. J. Oncol. 821–830; 1994.

  19. Marengo, S. R.; Resnick, M. I.; Yang, L.; Chung, J. Y. Differential expression of urinary inter-alpha-trypsin inhibitor trimers and dimers in normal compared to active calcium oxalate stone forming men [see comments]. J. Urol. 159:1444–1450; 1998.

    Article  PubMed  CAS  Google Scholar 

  20. Matturri, L.; Biondo, B.; Cazzullo, A.; Montanari, E.; Radice, F.; Timossi, R.; Turconi, P.; Lavezzi, A. M. Detection of trisomy 7 with fluorescence in situ hybridization and its correlation with DNA content and proliferating cell nuclear antigen-positivity in prostate cancer. Am. J. Clin. Oncol. 21:253–257; 1998.

    Article  PubMed  CAS  Google Scholar 

  21. Mickey, D. D.; Stone, K. R.; Wunderli, H.; Mickey, G. H.; Vollmer, R. T.; Paulson, D. F. Heterotransplantation of a human prostatic adenocarcinoma cell line in nude mice. Cancer Res. 37:4049–4058; 1977.

    PubMed  CAS  Google Scholar 

  22. Muraki, J.; Addonizio, J. C.; Choudhury, M. S.; Fischer, J.; Eshghi, M.; Davidian, M. M.; Shapiro, L. R.; Wilmot, P. L.; Nagamatsu, G. R.; Chiao, J. W. Establishment of new human prostatic cancer cell line (JCA-1). Urology 36:79–84; 1990.

    Article  PubMed  CAS  Google Scholar 

  23. Nagabhushan, M.; Miller, C. M.; Pretlow, T. P.; Giaconia, J. M.; Edgehouse, N. L.; Schwartz, S.; Kung, H. J.; de Vere White, R. W.; Gumerlock, P. H.; Resnick, M. I., et al. CWR22: the first human prostate cancer xenograft with strongly androgen-dependent and relapsed strains both in vivo and in soft agar. Cancer Research 56:3042–3046; 1996.

    PubMed  CAS  Google Scholar 

  24. Nagabhushan, M.; Pretlow, T. G.; Guo, Y. J.; Amini, S. B.; Pretlow, T. P.; Sy, M. S. Altered expression of CD44 in human prostate cancer during progression. Am. J. Clin. Pathol. 106:647–651; 1996.

    PubMed  CAS  Google Scholar 

  25. Narayan, P.; Dahiya, R. Establishment and characterization of a human primary prostatic adenocarcinoma cell line (ND-1). J. Urol. 148:1600–1604; 1992.

    PubMed  CAS  Google Scholar 

  26. Pousette, A.; Carlstrom, K.; Henriksson, P.; Grande, M.; Stege, R. Use of a hormone-sensitive (LNCaP) and a hormone-resistant (LNCaP-r) cell line in prostate cancer research. Prostate 31:198–203; 1997.

    Article  PubMed  CAS  Google Scholar 

  27. Pretlow, T. G.; Delmoro, C. M.; Dilley, G. G.; Spadafora, C. G.; Pretlow, T. P. Transplantation of human prostatic carcinoma into nude mice in Matrigel. Cancer Res. 51:3814–3817; 1991.

    PubMed  CAS  Google Scholar 

  28. Pretlow, T. G.; Wolman, S. R.; Micale, M. A.; Pelley, R. J.; Kursh, E. D.; Resnick, M. I.; Bodner, D. R.; Jacobberger, J. W.; Delmoro, C. M.; Giaconia, J. M., et al. Xenografts of primary human prostatic carcinoma. J. Natl. Cancer Inst. 85:394–398; 1993.

    Article  PubMed  CAS  Google Scholar 

  29. Schimenti, K. J.; Jacobberger, J. W. Fixation of mammalian cells for flow cytometric evaluation of DNA content and nuclear immunofluorescence. Cytometry 13:48–59; 1992.

    Article  PubMed  CAS  Google Scholar 

  30. Seabright, M. A rapid banding technique for human chromosomes. Lancet 2:971–972; 1971.

    Article  PubMed  CAS  Google Scholar 

  31. Sica, G.; Fabbroni, L.; Dell’Acqua, G.; Iacopino, F.; Marchetti, P.; Cacciatore, M.; Pavone-Macaluso, M. Natural beta-interferon and androgen receptors in prostatic cancer cells. Urol. Int. 46:159–162; 1991.

    Article  PubMed  CAS  Google Scholar 

  32. Stevens, J. W.; Palechek, P. L.; Griebling, T. L.; Midura, R. J.; Rokhlin, O. W.; Cohen, M. B. Expression of CD44 isoforms in human prostate tumor cell lines [see comments]. Prostate 28:153–161; 1996.

    Article  PubMed  CAS  Google Scholar 

  33. Stone, K. R.; Mickey, D. D.; Wunderli, H.; Mickey, G. H.; Paulson, D. F. Isolation of a human prostate carcinoma cell line (DU 145). Int. J. Cancer 21:274–281; 1978.

    Article  PubMed  CAS  Google Scholar 

  34. Stubbs, A. P.; Lalani, E. N.; Stamp, G. W.; Hurst, H.; Abel, P.; Waxman, J. Second messenger up-regulation of androgen receptor gene transcription is absent in androgen insensitive human prostatic carcinoma cell lines, PC-3 and DU-145. FEBS Lett. 383:237–240; 1996.

    Article  PubMed  CAS  Google Scholar 

  35. Tan, J.; Sharief, Y.; Hamil, K. G.; Gregory, C. W.; Zang, D. Y.; Sar, M.; Gumerlock, P. H.; deVere White, R. W.; Pretlow, T. G.; Harris, S. E., et al. Dehydroepiandrosterone activates mutant androgen receptors expressed in the androgen-dependent human prostate cancer xenograft CWR22 and LNCaP cells. Mol. Endocrinol. 11:450–459; 1997.

    Article  PubMed  CAS  Google Scholar 

  36. Tilley, W. D.; Wilson, C. M.; Marcelli, M.; McPhaul, M. J. Androgen receptor gene expression in human prostate carcinoma cell lines. Cancer Res. 50:5382–5386; 1990.

    PubMed  CAS  Google Scholar 

  37. Wainstein, M. A.; He, F.; Robinson, D.; Kung, H. J.; Schwartz, S.; Giaconia, J. M.; Edgehouse, N. L.; Pretlow, T. P.; Bodner, D. R.; Kursh, E. D., et al. CWR22: androgen-dependent xenograft model derived from a primary human prostatic carcinoma. Cancer Res. 54:6049–6052; 1994.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sramkoski, R.M., Pretlow, T.G., Giaconia, J.M. et al. A new human prostate carcinoma cell line, 22Rv1 . In Vitro Cell.Dev.Biol.-Animal 35, 403–409 (1999). https://doi.org/10.1007/s11626-999-0115-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-999-0115-4

Key words

Navigation