Skip to main content

Advertisement

Log in

A multiple species approach to biomass production from native herbaceous perennial feedstocks

  • Invited Review
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

Due to the rapid rate of worldwide consumption of nonrenewable fossil fuels, production of biofuels from cellulosic sources is receiving increased research emphasis. Here, we review the feasibility to produce lignocellulosic biomass on marginal lands that are not well-suited for conventional crop production. Large areas of these marginal lands are located in the central prairies of North America once dominated by tallgrass species. In this article, we review the existing literature, current work, and potential of two native species of the tallgrass prairie, prairie cordgrass (Spartina pectinata), and little bluestem (Schizachyrium scoparium) as candidates for commercial production of biofuel. Based on the existing literature, we discuss the need to accelerate research in the areas of agronomy, breeding, genetics, and potential pathogens. Cropping systems based on maintaining biodiversity across landscapes are essential for a sustainable production and to mitigate impact of pathogens and pests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.

Similar content being viewed by others

References

  • Ainouche M. L.; Baumel A.; Salmon A. Spartina angelica c. E. Hubbard: A natural model system for analysing early evolutionary changes that affect allopolyploid genomes. Biol. J. Linn. Soc. 82: 475–484; 2004a. doi:10.1111/j.1095-8312.2004.00334.x.

    Article  Google Scholar 

  • Ainouche M. L.; Baumel A.; Salmon A.; Yannic G. Hybridization, polyploidy and speciation in Spartina (Poaceae). New Phytol. 161: 165–172; 2004b. doi:10.1046/j.1469-8137.2003.00926.x.

    Article  CAS  Google Scholar 

  • Alderman S. C.; Halse R. R.; White J. F. A reevaluation of the host range and geographical distribution of Claviceps species in the United States. Plant Dis. 88: 63–81; 2004. doi:10.1094/PDIS.2004.88.1.63.

    Article  Google Scholar 

  • Alderson J.; Sharp W. C. Grass varieties in the United States. USDA-SCS, Washington, DC1994.

    Google Scholar 

  • Al-Kaisi M. M.; Grote J. B. Cropping system effects on improving soil carbon stocks of exposed subsoil. Soil Sci. Soc. Am. J. 71: 1381–1388; 2007. doi:10.2136/sssaj2006.0200.

    Article  CAS  Google Scholar 

  • Anderson W. F.; Dien B. S.; Brandon S. K.; Peterson J. D. Assessment of bermudagrass and bunch grasses as feedstock for conversion to ethanol. Appl. Biochem. Biotechnol. 145: 13–21; 2008. doi:10.1007/s12010-007-8041-y.

    Article  PubMed  CAS  Google Scholar 

  • Anderson K. L.; Aldous A. Improvement of Andropogon scoparius Michx. By breeding and selection. J. Am. Soc. Agronom. 30: 862–869; 1938.

    Google Scholar 

  • Baisakh N.; Subudhi P. K.; Parami N. P. cDNA-AFLP analysis reveals differential gene expression in response to salt stress in a halophyte Spartina alterniflora Loisel. Plant Sci. 170: 1141–1149; 2006. doi:10.1016/j.plantsci.2006.02.001.

    Article  CAS  Google Scholar 

  • Baisakh N.; Subudhi P.; Varadwaj P. Primary responses to salt stress in a halophyte, smooth cordgrass (Spartina alterniflora Loisel.). Funct. Integr. Genom. 8: 287–300; 2008. doi:10.1007/s10142-008-0075-x.

    Article  CAS  Google Scholar 

  • Balachandran S.; Hurry V. M.; Kelley S. E.; Osmond C. B.; Robinson S. A.; Rohozinski J.; Seaton G. G. R.; Sims D. A. Concepts of plant biotic stress. Some insights into the stress physiology of virus-infected plants, from the perspective of photosynthesis. Physiol Plant 100: 203–213; 1997. doi:10.1111/j.1399-3054.1997.tb04776.x.

    Article  CAS  Google Scholar 

  • Barney J. N.; Ditomaso J. M. Nonnative species and bioenergy: are we cultivating the next invader? Bioscience 58: 64–70; 2008. doi:10.1641/B580111.

    Article  Google Scholar 

  • Baumel A.; Ainouche M. L.; Bayer R. J.; Ainouche A. K.; Misset M. T. Molecular phylogeny of hybridizing species from the genus Spartina Schreb. (Poaceae). Mol. Phylogenet. Evol. 22: 303–314; 2002. doi:10.1006/mpev.2001.1064.

    Article  PubMed  CAS  Google Scholar 

  • Bennett, M. D.; Leitch, I. J. Plant DNA c-values database (release 4.0, Oct. 2005); 2005.

  • Blum M. J.; Sloop C. M.; Ayres D. R.; Strong D. R. Characterization of microsatellite loci in Spartina species (Poaceae). Mol. Ecol. Notes 4: 39–42; 2004. doi:10.1046/j.1471-8286.2003.00556.x.

    Article  CAS  Google Scholar 

  • Boe A.; Bortnem R. Morphology and genetics of biomass in little bluestem. Crop Sci. 49: 411–418; 2009.

    Article  Google Scholar 

  • Boe A.; Keeler K. H.; Normann G. A.; Hatch S. L. The indigenous bluestems of the western hemisphere and gambagrass. In: Moser L.; Burson B.; Sollenberger L. (eds) Warm-season (c4) grasses. ASA, Madison, WI, pp 873–908; 2004.

    Google Scholar 

  • Boe A.; Lee D. K. Genetic variation for biomass production in prairie cordgrass and switchgrass. Crop Sci. 47: 929–934; 2007.

    Google Scholar 

  • Bouton J. H. Molecular breeding of switchgrass for use as a biofuel crop. Curr. Opin. Genet Dev. 17: 553–558; 2007. doi:10.1016/j.gde.2007.08.012.

    Article  PubMed  CAS  Google Scholar 

  • Bruner, J. Systematics of the Schizachyrium scoparium group (Poaceae) in North America. Am. J. Bot. 70 Part 2. (5): 108; 1983.

  • Brunt A.; Crabtree K.; Dallwitz M.; Gibbs A.; Watson L. Viruses of plants: descriptions and lists from the VIDE database. CAB International, Wallingford, UK; 1996.

    Google Scholar 

  • Cao D.; Craig B.; Doerge R. A model selection-based interval mapping method for autotetraploids. Genetics 169: 2371–2382; 2005. doi:10.1534/genetics.104.035410.

    Article  PubMed  CAS  Google Scholar 

  • Cardona Ca; Sanchez O. J. Fuel ethanol production: Process design trends and integration opportunities. Bioresour. Technol. 98: 2415–2457; 2007. doi:10.1016/j.biortech.2007.01.002.

    Article  PubMed  CAS  Google Scholar 

  • Cassman K. G.; Liska A. J. Food and fuel for all: Realistic or foolish? Biofuels Bioprod Bioref 1: 18–23; 2007. doi:10.1002/bbb.3.

    Article  CAS  Google Scholar 

  • Ceccato P.; Cressman K.; Giannini A.; Trzaska S. The desert locust upsurge in West Africa (2003–2005): Information on the desert locust early warning system and the prospects for seasonal climate forecasting. Int. J. Pest Manag. 53: 7–13; 2007. doi:10.1080/09670870600968826.

    Article  Google Scholar 

  • Ceotto, E. Grasslands for bioenergy production: A review. Agron. Sustain. Dev. 28: 47–55; 2008.

    Article  Google Scholar 

  • Chen F.; Dixon R. A. Lignin modification improves fermentable sugar yields for biofuel production. Nat. Biotechnol. 25: 759–761; 2007. doi:10.1038/nbt1316.

    Article  PubMed  CAS  Google Scholar 

  • Christian D. G.; Riche A. B.; Yates N. E. Growth, yield and mineral content of Miscanthus x giganteus grown as a biofuel for 14 successive harvests. Ind. Crop Prod. 28: 320–327; 2008. doi:10.1016/j.indcrop.2008.02.009.

    Article  Google Scholar 

  • Cornelius D. R. The effect of source of little bluestem grass seed on growth, adaptation, and use in revegetation seeding. J. Agric. Res. 74: 133–143; 1947.

    Google Scholar 

  • Da Silva J.; Sorrells M.; Burnquist W.; Tanskley S. RFLP linkage map and genome analysis of Saccharum spontaneum. Genome 36: 182–791; 1993.

    Article  Google Scholar 

  • Demirbas A. Recent progress in biorenewable feedstocks. Energy Educ. Sci. Technol. 22: 69–95; 2008.

    CAS  Google Scholar 

  • Dien B. S.; Jung H. J. G.; Vogel K. P.; Casler M. D.; Lamb J. F. S.; Iten L.; Mitchell R. B.; Sarath G. Chemical composition and response to dilute-acid pretreatment and enzymatic saccharification of alfalfa, reed canarygrass, and switchgrass. Biomass Bioenergy 30: 880–891; 2006. doi:10.1016/j.biombioe.2006.02.004.

    Article  CAS  Google Scholar 

  • Diener T. Physiology of virus-infected plants. Annu. Rev. Phytopathol. 1: 197–218; 1963. doi:10.1146/annurev.py.01.090163.001213.

    Article  CAS  Google Scholar 

  • Diwan N.; Bouton J.; Kochert G.; Creagan P. Mapping of simple sequence repeat (SSR) DNA markers in diploid and tetraploid alfalfa. Theor. Appl. Genet. 101: 165–172; 2000. doi:10.1007/s001220051465.

    Article  CAS  Google Scholar 

  • Doolittle J. J.; Malo, D. D., Kunze, B. O.; Winter, S. D.; Schaefer Jr., W. T.; Millar, J. B.; Shurtliff, D. R. Land judging in South Dakota. ABS 8-01; South Dakota State Univ.; 2002.

  • Evanylo G. K.; Abaye A. O.; Dundas C.; Zipper C. E.; Lemus R.; Sukkariyah B.; Rockett J. Herbaceous vegetation productivity, persistence, and metals uptake on a biosolids-amended mine soil. J. Environ. Qual. 34: 1811–1819; 2005. doi:10.2134/jeq2004.0329.

    Article  PubMed  CAS  Google Scholar 

  • Fargione J.; Hill J.; Tilman D.; Polasky S.; Hawthorne P. Land clearing and the biofuel carbon debt. Science 319: 1235–1238; 2008. doi:10.1126/science.1152747.

    Article  PubMed  CAS  Google Scholar 

  • Farr D. F.; Rossman A. Y. Fungal databases. Systematic Mycology and Microbiology Laboratory, ARS, USDA, Baltimore; 2009.

    Google Scholar 

  • Freyre R.; Warnke S.; Sosinski B.; Douches D. Quantitative trait locus analysis of tuber dormancy in diploid potato (Solanun spp). Theor. Appl. Genet. 89: 474–480; 1994. doi:10.1007/BF00225383.

    Article  CAS  Google Scholar 

  • Fu Y. B.; Phan A. T.; Coulman B.; Richards W. Genetic diversity in natural populations and corresponding seed collections of little bluestem as revealed by AFLP markers. Crop Sci. 44: 2254–2260; 2004.

    Google Scholar 

  • Garrett Ka; Mundt C. C. Epidemiology in mixed host populations. Phytopathology 89: 984–990; 1999. doi:10.1094/PHYTO.1999.89.11.984.

    Article  PubMed  CAS  Google Scholar 

  • Gaunt J. L.; Lehmann J. Energy balance and emissions associated with biochar sequestration and pyrolysis bioenergy production. Environ. Sci. Tech. 42: 4152–4158; 2008. doi:10.1021/es071361i.

    Article  CAS  Google Scholar 

  • Gilbert W. L.; Perry L. J.; Stubbiendieck J. Dry matter accumulation of four warm season grasses in the Nebraska sandhills. J. Range Manag.52–54; 1979. doi:10.2307/3897385.

  • Gomez L. D.; Steele-King C. G.; McQueen-Mason S. J. Sustainable liquid biofuels from biomass: The writing’s on the walls. New Phytol. 178: 473–485; 2008. doi:10.1111/j.1469-8137.2008.02422.x.

    Article  PubMed  CAS  Google Scholar 

  • Gravert C.; Tiffany L.; Munkvold G. Outbreak of smut caused by Tilletia maclaganii on cultivated switchgrass in Iowa. Plant Dis. 84: 596; 2000. doi:10.1094/PDIS.2000.84.5.596A.

    Article  Google Scholar 

  • Heaton E.; Clifton-Brown J. C.; Voigt T.; Jones M.; Long S. P. Miscanthus for renewable energy generation: European Union experience and projections for Illinois. Mitig. Adapt. Strategies Glob. Chang. 9: 433–451; 2004. doi:10.1023/B:MITI.0000038848.94134.be.

    Article  Google Scholar 

  • Heaton E. A.; Dohleman F. G.; Long S. P. Meeting US biofuel goals with less land: The potential of Miscanthus. Glob. Chang. Biol. 14: 2000–2014; 2008. doi:10.1111/j.1365-2486.2008.01662.x.

    Article  Google Scholar 

  • Hitchcock A. S. Manual of the grasses of the United States. USDA Misc. Pub. No. 200. U.S. Gov. Print. Office, Washington, D.C.1935.

    Google Scholar 

  • Hockensmith R. D.; Steele J. G. Recent trends in the use of the land-capability classification. Soil Sci. Soc. Amer. J. 14: 383–388; 1950.

    Google Scholar 

  • Huff D. R.; Quinn J. A.; Higgins B.; Palazzo A. J. Random amplified polymorphic DNA (RAPD) variation among native little bluestem [Schizachyrium scoparium (Michx.) Nash] populations from sites of high and low fertility in forest and grassland biomes. Mol. Ecol. 7: 1592–1597; 1998. doi:10.1046/j.1365-294x.1998.00473.x.

    Article  Google Scholar 

  • Hultquist S. J.; Vogel K. P.; Lee D. J.; Arumuganathan K.; Kaeppler S. Chloroplast DNA and nuclear DNA content variations among cultivars of switchgrass, Panicum virgatum L. Crop Sci. 36: 1049–1052; 1996.

    Article  Google Scholar 

  • Ingham R. E.; Detling J. K. Effects of root-feeding nematodes on aboveground net primary production in a North American grassland. Plant Soil 121: 279–281; 1990. doi:10.1007/BF00012321.

    Article  Google Scholar 

  • Jacobson E. T.; Tober D. A.; Haas R. J.; Darris D. C. The performance of selected cultivars of warm season grasses in the northern prairie and plains states. In: Clambey G. K.; Pemble R. H. (eds) The 9th North American Prairie Conference. Tri-College University Centre for Environmental Studies, Moorhead, MN, pp 215–221; 1984.

    Google Scholar 

  • James C. Global status of commercialized biotech/GM crops. ISAAA Brief Number 39. ISAAA, Ithaca, NY2008.

    Google Scholar 

  • Johnson S. R.; Knapp A. K. Impact of Ischnodemus falicus (Hemiptera: Lygaeidae) on photosynthesis and production of Spartina pectinata wetlands. Environ. Entomol. 25: 1122–1127; 1996.

    Google Scholar 

  • Johnson J. R.; Larsen G. E. Grassland plants of South Dakota and the northern great plains. South Dakota Agricultural Experiment Station, South Dakota State University, Brookings, SD1; 999.

    Google Scholar 

  • Kalo P.; Endre G.; Zimanyi L.; Csnadi G.; Kiss G. Construction of an improved linkage map of diploid alfalfa (Medicago sativa)Theor. Appl. Genet. 100: 641–657; 2000.

    Article  CAS  Google Scholar 

  • Keshwani D. R.; Cheng J. J. Switchgrass for bioethanol and other value-added applications: A review. Bioresour. Technol. 100: 1515–1523; 2009. doi:10.1016/j.biortech.2008.09.035.

    Article  PubMed  CAS  Google Scholar 

  • Kittelson P. M.; Handler S. D. Genetic diversity in isolated patches of the tallgrass prairie forb, Lithospermum canescens (Boraginaceae). J. Torrey Bot. Soc. 133: 513–518; 2006. doi:10.3159/1095-5674(2006)133[513:GDIIPO]2.0.CO;2.

    Article  Google Scholar 

  • Knapp A. K.; Briggs J. M.; Blair J. M.; Turner C. L. Patterns and controls of aboveground net primary production in tallgrass prairie. In: Knapp A. K. (ed) Grassland dynamics: Long-term ecological research in tallgrass prairie. Oxford University Press, Oxford, UK; 1998.

    Google Scholar 

  • Leslie J. F.; Zeller K. A.; Logrieco A.; Mule G.; Moretti A.; Ritieni A. Species diversity of and toxin production by Gibberella fujikuroi species complex strains isolated from native prairie grasses in Kansas. Appl. Environ. Microbiol. 70: 2254–2262; 2004. doi:10.1128/AEM.70.4.2254-2262.2004.

    Article  PubMed  CAS  Google Scholar 

  • Linsmaier E. M.; Skoog K. Organic growth factor requirement for tobacco tissue cultures. Physiol. Plant 18: 100–127; 1965. doi:10.1111/j.1399-3054.1965.tb06874.x.

    Article  CAS  Google Scholar 

  • Luo Z. W.; Hackett C. A.; Bradshaw J. E.; McNichol J. W.; Milbourne D. Construction of a genetic linkage map in tetraploid species using molecular markers. Genetics 157: 1369–1385; 2001.

    PubMed  CAS  Google Scholar 

  • Luo Z. W.; Zhang R. M.; Kearsey M. J. Theoretical basis for genetic linkage analysis in autotetraploid species. Proc. Natl. Acad. Sci. U. S. A. 101: 7040–7045; 2004. doi:10.1073/pnas.0304482101.

    Article  PubMed  CAS  Google Scholar 

  • Luo Z. W.; Zhang Z.; Leach L.; Zhang R. M.; Bradshaw J. E.; Kearsey M. J. Constructing genetic linkage maps under a tetrasomic model. Genetics 172: 2635–2645; 2006. doi:10.1534/genetics.105.052449.

    Article  PubMed  CAS  Google Scholar 

  • Madakadze I. C.; Coulman B. E.; Mcelroy A. R.; Stewart K. A.; Smith D. L. Evaluation of selected warm-season grasses for biomass production in areas with a short growing season. Bioresour. Technol. 65: 1–12; 1998. doi:10.1016/S0960-8524(98)00039-X.

    Article  CAS  Google Scholar 

  • Mankin C. J. Diseases of grasses and cereals in South Dakota: a check list. Agricultural Experiment Station, South Dakota State University, Brookings, SD, p 28; 1969.

    Google Scholar 

  • Marchant C. J. Corrected chromosome numbers for Spartina x townsendii and its parents. Nature 199: 929; 1963. doi:10.1038/199929a0.

    Article  Google Scholar 

  • Marchant C. J. Evolution in Spartina (Gramineane). III. Species chromosome numbers and their taxonomic significance. Bot. J. Linn. Soc. 60: 411–417; 1968. doi:10.1111/j.1095-8339.1968.tb00097.x.

    Article  Google Scholar 

  • Martinez-Reyna J. M.; Vogel K. P. Heterosis in switchgrass: spaced plants. Crop Sci. 48: 1312–1320; 2008. doi:10.2135/cropsci2007.12.0695.

    Article  Google Scholar 

  • Masters R. A.; Mislevy P.; Moser L. E.; Rivas-Pantoja F. Stand establishment. In: Moser L. E.; Burson B. L.; Sollenberger L. E. (eds) Warm-season (C4) grasses. Agronomy Monograph No. 45. ASA, CSSA, SSSA, Madison, WI, pp 145–178; 2004.

    Google Scholar 

  • McDonald B. A.; Linde C. Pathogen population genetics, evolutionary potential, and durable resistance. Annu. Rev. Phytopathol. 40: 349–379; 2002. doi:10.1146/annurev.phyto.40.120501.101443.

    Article  PubMed  CAS  Google Scholar 

  • McLaughlin S. B.; Kszos L. A. Development of switchgrass (Panicum virgatum) as a bioenergy feedstock in the United States. Biomass Bioenergy 28: 515–535; 2005. doi:10.1016/j.biombioe.2004.05.006.

    Article  Google Scholar 

  • Missaoui A. M.; Paterson A. H.; Bouton J. H. Investigation of genomic organization in switchgrass (Panicum virgatum L.) using DNA markers. Theor. Appl. Genet. 110: 1372–1383; 2005. doi:10.1007/s00122-005-1935-6.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell C. E.; Tilman D.; Groth J. V. Effects of grassland plant species diversity, abundance, and composition on foliar fungal disease. Ecology 83: 1713–1726; 2002.

    Article  Google Scholar 

  • Mobberley D. G. Taxonomy and distribution of the genus Spartina. Iowa State Coll. J. Sci. 30: 471–574; 1956.

    Google Scholar 

  • Montemayor M. B.; Price J. S.; Rochefort L.; Boudreau S. Temporal variations and spatial patterns in saline and waterlogged peat fields. Environ. Exp. Bot. 62: 333–342; 2008.

    Google Scholar 

  • Mulkey V. R.; Owens V. N.; Lee D. K. Management of switchgrass-dominated conservation reserve program lands for biomass production in South Dakota. Crop Sci. 46: 712–720; 2006. doi:10.2135/cropsci2005.04-0007.

    Article  CAS  Google Scholar 

  • Mulkey V. R.; Owens V. N.; Lee D. K. Management of warm-season grass mixtures for biomass production in South Dakota USA. Bioresour. Technol. 99: 609–617; 2008. doi:10.1016/j.biortech.2006.12.035.

    Article  PubMed  CAS  Google Scholar 

  • Mundt C. C. Use of multiline cultivars and cultivar mixtures for disease management. Annu. Rev. Phytopathol. 40: 381–410; 2002. doi:10.1146/annurev.phyto.40.011402.113723.

    Article  PubMed  CAS  Google Scholar 

  • Nutter F. W.; Guan J.; Gotlieb A. R.; Rhodes L. H.; Grau C. R.; Sulc R. M. Quantifying alfalfa yield losses caused by foliar diseases in Iowa, Ohio, Wisconsin, and Vermont. Plant Dis. 86: 269–277; 2002. doi:10.1094/PDIS.2002.86.3.269.

    Article  Google Scholar 

  • Orolaza N. P.; Lamari L.; Balance G. M. Evidence of a host-specific chlorosis toxin from Pyrenophora-tritici-repentis, the causal agent of tan spot of wheat. Phytopathology 85: 1282–1287; 1995. doi:10.1094/Phyto-85-1282.

    Article  CAS  Google Scholar 

  • Parker I. M.; Gilbert G. S. The evolutionary ecology of novel plant–pathogen interactions. Annu. Rev. Ecol. Evol. Syst. 35: 675–700; 2004. doi:10.1146/annurev.ecolsys.34.011802.132339.

    Article  Google Scholar 

  • Parrish D. J.; Fike J. H. The biology and agronomy of switchgrass for biofuels. Crit. Rev. Plant Sci. 24: 423–459; 2005. doi:10.1080/07352680500316433.

    Article  Google Scholar 

  • Perlack R.; Wright L.; Turhollow A.; Graham R.; Stokes B.; Erbach D. Biomass as feedstock for a bioenergy and bioproducts industry: the technical feasibility of a billion-ton annual supply. U.S. Dept. of Commerce, Springfield, VA; 2005.

    Google Scholar 

  • Phan A. T.; Smith Jr. S. R. Seed yield variation in blue grama and little bluestem plant collections in southern Manitoba, Canada. Crop Sci. 40:555-561; 2000.

    Google Scholar 

  • Plantard O.; Valette S.; Gross M. F. The root-knot nematode producing galls on Spartina altemiflora belongs to the genus Meloidogyne: Rejection of Hypsoperine and Spartonema spp. J. Nematol. 39: 127–132; 2007.

    PubMed  CAS  Google Scholar 

  • Polley H. W.; Wilsey B. J.; Derner J. D. Dominant species constrain effects of species diversity on temporal variability in biomass production of tallgrass prairie. Oikos 116: 2044–2052; 2007. doi:10.1111/j.2007.0030-1299.16080.x.

    Article  Google Scholar 

  • Potter L.; Bingham M. J.; Bajer M. G.; Long S. P. The potential of two perennial C4 grasses and a perennial C4 sedge as ligno-cellulosic fuel crop in N.W. Europe crop establishment and yields in E. England. Ann. Bot. 76: 520; 1995. doi:10.1006/anbo.1995.1127.

    Article  Google Scholar 

  • Reed C. List of insect species which may be tallgrass prairie specialists. University of Minnesota, St. Paul, MN; 1996.

    Google Scholar 

  • Reeder J. R. Chromosome numbers in western grasses. Am. J. Bot. 64: 102–110; 1977. doi:10.2307/2441882.

    Article  Google Scholar 

  • Riedell W. E.; Gustin R. D.; Beck D. L. Effect of irrigation on root-growth and yield of plants damaged by western corn-rootworm larvae. Maydica 37: 143–148; 1992.

    Google Scholar 

  • Russelle M. P.; Morey R. V.; Baker J. M.; Porter P. M.; Jung H.-J. Comment on “carbon-negative biofuels from low-input high-diversity grassland biomass”. Science 316: 1567b; 2007. doi:10.1126/science.1139388.

    Article  CAS  Google Scholar 

  • Ryan, A. B. Agronomic and molecular characterization of Louisiana native Spartina alterniflora accessions. Agronomy. Dissertation, Louisiana State University and Agricultural and Mechanical College; 2003.

  • Sanderson M. A.; Adler P. R. Perennial forages as second generation bioenergy crops. Int. J. Mol. Sci. 9: 768–788; 2008. doi:10.3390/ijms9050768.

    Article  PubMed  CAS  Google Scholar 

  • Sanderson M. A.; Adler P. R.; Boateng A. A.; Casler M. D.; Sarath G. Switchgrass as a biofuels feedstock in the USA. Can. J. Plant Sci. 86: 1315–1325; 2006.

    Google Scholar 

  • Sanderson M. A.; Brink G. E.; Higgins K. F.; Naugle D. E. Alternative uses of warm-season forage grasses. In: Moser L. E.; Burson B. L.; Sollenberger L. E. (eds) Warm-season (C4) grasses. Agronomy Monograph No. 45. ASA, CSSA, SSSA, Madison, WI, pp 389–416; 2004.

    Google Scholar 

  • Sarath G.; Mitchell R. B.; Sattler S. E.; Funnell D.; Pedersen J. F.; Graybosch R. A.; Vogel K. P. Opportunities and roadblocks in utilizing forages and small grains for liquid fuels. J. Ind. Microbiol. Biotechnol. 35: 343–354; 2008. doi:10.1007/s10295-007-0296-3.

    Article  PubMed  CAS  Google Scholar 

  • Schmer M. R.; Vogel K. P.; Mitchell R. B.; Perrin R. K. Net energy of cellulosic ethanol from switchgrass. Proc. Natl. Acad. Sci. U. S. A. 105: 464–469; 2008. doi:10.1073/pnas.0704767105.

    Article  PubMed  CAS  Google Scholar 

  • Schnoor J. L. Biofuels and the environment. Environ. Sci. Tech. 40: 4042–4042; 2006. doi:10.1021/es0627141.

    Article  Google Scholar 

  • Searchinger T.; Heimlich R.; Houghton R. A.; Dong F. X.; Elobeid A.; Fabiosa J.; Tokgoz S.; Hayes D.; Yu T. H. Use of us croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319: 1238–1240; 2008. doi:10.1126/science.1151861.

    Article  PubMed  CAS  Google Scholar 

  • Simpson T. W.; Sharpley A. N.; Howarth R. W.; Paerl H. W.; Mankin K. R. The new gold rush: Fueling ethanol production while protecting water quality. J. Environ. Qual. 37: 318–324; 2008. doi:10.2134/jeq2007.0599.

    Article  PubMed  CAS  Google Scholar 

  • Sims P. L.; Risser P. G. Grasslands. In: Barbour M. G.; Billings W. D. (eds) North American terrestrial vegetation. Cambridge Univ. Press, Cambridge, MS, pp 323–356; 2000.

    Google Scholar 

  • Sloop C. M.; McGray H. G.; Blum M. J.; Strong D. R. Characterization of 24 additional microsatellite loci in Spartina species(Poaceae). Conservat. Genet. 6: 1049–1052; 2005. doi:10.1007/s10592-005-9084-7.

    Article  Google Scholar 

  • Smiley R. W.; Easley S. A.; Gourlie J. A. Annual spring wheat yields are suppressed by root-lesion nematodes in Oregon. Phytopathology 96: S171–S171; 2006. doi:10.1094/PHYTO-96-0171.

    Article  Google Scholar 

  • Smolik J. D. The role of nematodes in a South Dakota grassland ecosystem. Plant Science Department, South Dakota State University, Brookings, SD, p 74; 1973.

    Google Scholar 

  • Somleva M. N.; Snell K. D.; Beaulieu J. J.; Peoples O. P.; Garrison B. R.; Patterson N. A. Production of polyhydroxybutyrate in switchgrass, a value-added co-product in an important lignocellulosic biomass crop. Plant Biotechnol. 6: 663–678; 2008. doi:10.1111/j.1467-7652.2008.00350.x.

    Article  CAS  Google Scholar 

  • Song K.; Lu P.; Tang K.; Osborn T. C. Rapid genome change in synthetic polyploids of Brassica and its implications for polyploid evolution. Proc. Natl. Acad. Sci. U. S. A. 92: 7719–7723; 1995. doi:10.1073/pnas.92.17.7719.

    Article  PubMed  CAS  Google Scholar 

  • Songstad D. D.; Chen C. H.; Boe A. A. Plant regeneration in callus cultures derived from young inflorescences of little bluestem. Crop Sci. 26: 827–829; 1986.

    Article  Google Scholar 

  • Stewart D. A. B. Economic losses in cereal crops following damage by the African migratory locust, Locusta migratoria migratorioides (Reiche & Fairmaire) (Orthoptera: Acrididae), in the northern province of South Africa. Afr. Entomol. 5: 167–170; 1997.

    Google Scholar 

  • Stubbiendieck J.; Hatch S. L.; Kjar K. J. North American range plants. University of Nebraska Press, Lincoln, NE; 1982.

    Google Scholar 

  • Tilman D.; Hill J.; Lehman C. Carbon-negative biofuels from low-input high-diversity grassland biomass. Science 314: 1598–1600; 2006. doi:10.1126/science.1133306.

    Article  PubMed  CAS  Google Scholar 

  • Tober D. A.; Duckwitz W.; Knudson W. Big bluestem trials in North Dakota, South Dakota, and Minnesota. USDA NRCS Plant Materials Center, Bismark, ND; 2008.

    Google Scholar 

  • Tobias C. M.; Hayden D. M.; Twigg P.; Sarath G. Genic microsatellite markers derived from EST sequences of switchgrass (Panicum virgatum L.). Mol. Ecol. Notes 6: 185–187; 2006. doi:10.1111/j.1471-8286.2006.01187.x.

    Article  CAS  Google Scholar 

  • Tobias C. M.; Sarath G.; Twigg P.; Lindquist E.; Pangilinan J.; Penning B. J.; Barry K.; McCann M. C.; Carpita N. C.; Lazo G. R. Comparison of switchgrass ESTs with the Sorghum genome and development of EST-SSR markers. Plant Genome 2: 111–124; 2008. doi:10.3835/plantgenome2008.08.0003.

    Article  CAS  Google Scholar 

  • Tobias C. M.; Twigg P.; Hayden D. M.; Vogel K. P.; Mitchell R. M.; Lazo G. R.; Chow E. K.; Sarath G. Analysis of expressed sequence tags and the identification of associated short tandem repeats in switchgrass. Theor. Appl. Genet 111: 956–964; 2005. doi:10.1007/s00122-005-0030-3.

    Article  PubMed  Google Scholar 

  • Todd M. C.; Washington R.; Cheke R. A.; Kniveton D. Brown locust outbreaks and climate variability in southern Africa. J. Appl. Ecol. 39: 31–42; 2002. doi:10.1046/j.1365-2664.2002.00691.x.

    Article  Google Scholar 

  • Travis S. E.; Hester M. W. A space-for-time substitution reveals the long-term decline in genotypic diversity of a widespread salt marsh plant, Spartina alterniflora, over a span of 1500 years. J. Ecol. 93: 417–430; 2005. doi:10.1111/j.0022-0477.2005.00985.x.

    Article  Google Scholar 

  • U.S. DOE. Breaking the biological barriers to cellulosic ethanol: A joint research agenda, DOE/SC-0095 U.S. Department of Energy Office of Science and Office of Energy and Renewable Energy (http://www.doegenomestolife.org/biofuels/); 2006.

  • USDA-NRCS. Summary report, 1997 National Resources Inventory. Revised Dec. 2000 - Table 4 (http://www.nrcs.usda.gov/technical/NRI/1997/summary_reports/table4.html; website verified 5 Feb. 2009); 2000.

  • USDA-SCS. Land resource regions and major land resource areas of the United States. In: USDA-SCS (ed) Superintendent of documents. U.S. Government Print Office, Washington, DC; 1981.

    Google Scholar 

  • Varvel G. E.; Vogel K. P.; Mitchell R. B.; Follett R. F.; Kimble J. M. Comparison of corn and switchgrass on marginal soils for bioenergy. Biomass Bioenergy 32: 18–21; 2008. doi:10.1016/j.biombioe.2007.07.003.

    Article  CAS  Google Scholar 

  • Vogel K. P.; Brejda J. J.; Walters D. T.; Buxton D. R. Switchgrass biomass production in the Midwest USA: Harvest and nitrogen management. Agron. J. 94: 413–420; 2002.

    Google Scholar 

  • Vogel K. P.; Jung H. G. Genetic modification of herbaceous plants for feed and fuel. Crit. Rev. Plant Sci. 20: 15–49; 2001. doi:10.1016/S0735-2689(01)80011-3.

    Article  Google Scholar 

  • Weaver J. E. Extent of communities and abundance of the most common grasses in prairie. Bot. Gaz. 122: 25–33; 1960. doi:10.1086/336082.

    Article  Google Scholar 

  • Weaver J. E. North American prairie. Johnsen, Lincoln, NE; 1954.

    Google Scholar 

  • Weaver J. E.; Fitzpatrick T. J. Ecology and relative importance of the dominants of the tall-grass prairie. Bot. Gaz. 93: 113–150; 1932. doi:10.1086/334244.

    Article  Google Scholar 

  • Wells G. R.; Fribourg H. A.; Schlarbaum S. E.; Ammons J. T.; Hodges D. G. Alternate land uses for marginal soils. J. Soil Water Conserv. 58: 73–81; 2003.

    Google Scholar 

  • Willis W. O.; Bauer A.; Black A. L. Water conservation: Northern great plains. In: Dregne H. E.; Willis W. O. (eds) Dryland agriculture. Agronomy Monograph 23. ASA, CSSA, SSSA, Madison, WI; 1983.

    Google Scholar 

  • Wipff J. K. Nomenclature combinations of Schizachyrium (Poaceae: Andropogoneae). Phytologia 80: 35–39; 1996.

    Google Scholar 

  • Wu R.; Gallo-Meagher M.; Littell R. C.; Zeng Z. A general polyploid model for analyzing gene segregation in outcrossing tetraploid species. Genetics 159: 869–882; 2001.

    PubMed  CAS  Google Scholar 

  • Wu R.; Ma C. A general framework for statistical linkage analysis in multivalent tetraploids. Genetics 170: 899–907; 2005. doi:10.1534/genetics.104.035816.

    Article  PubMed  CAS  Google Scholar 

  • Young D. K. Remnant dependence among prairie-inhabiting and savanna-inhabiting insects. Nat. Area J. 15: 290–292; 1995.

    Google Scholar 

  • Young Sa; Park S. K.; Rodgers C.; Mitchell R. E.; Bender C. L. Physical and functional-characterization of the gene-cluster encoding the polyketide phytotoxin coronatine in Pseudomonas-syringae pv-glycinea. J. Bacteriol. Virol. 174: 1837–1843; 1992.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. L. Gonzalez-Hernandez.

Additional information

Editors: P. Lakshmanan; D. Songstad

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gonzalez-Hernandez, J.L., Sarath, G., Stein, J.M. et al. A multiple species approach to biomass production from native herbaceous perennial feedstocks. In Vitro Cell.Dev.Biol.-Plant 45, 267–281 (2009). https://doi.org/10.1007/s11627-009-9215-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-009-9215-9

Keywords

Navigation