Skip to main content
Log in

Effect of Particle Size on Thermal Conductivity of Nanofluid

  • Symposium: Materials Behavior: Far from Equilibrium
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Nanofluids, containing nanometric metallic or oxide particles, exhibit extraordinarily high thermal conductivity. It is reported that the identity (composition), amount (volume percent), size, and shape of nanoparticles largely determine the extent of this enhancement. In the present study, we have experimentally investigated the impact of Al2Cu and Ag2Al nanoparticle size and volume fraction on the effective thermal conductivity of water and ethylene glycol based nanofluid prepared by a two-stage process comprising mechanical alloying of appropriate Al-Cu and Al-Ag elemental powder blend followed by dispersing these nanoparticles (1 to 2 vol pct) in water and ethylene glycol with different particle sizes. The thermal conductivity ratio of nanofluid, measured using an indigenously developed thermal comparator device, shows a significant increase of up to 100 pct with only 1.5 vol pct nanoparticles of 30- to 40-nm average diameter. Furthermore, an analytical model shows that the interfacial layer significantly influences the effective thermal conductivity ratio of nanofluid for the comparable amount of nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J.C. Maxwell: A Treatise on Electricity and Magnetism, 2nd ed., Clarendon Press, Oxford, United Kingdom, 1873

    Google Scholar 

  2. S.U.S. Choi: Developments and Applications of Non-Newtonian Flows, American Society of Mechanical Engineers (ASME), New York, NY, 1995, FED-vol. 231/MD-vol. 66, pp. 99–105

  3. P. Keblinski, J.A. Eastman, D.G. Cahill: Mater. Today, 2005, vol. 8, pp. 36–44

    Article  CAS  Google Scholar 

  4. S. Zussman: Argonne National Laboratory, Argonne, IL, public communication, 2002

  5. S.K. Das, N. Putra, P. Thiesen, W. Roetzel: J. Heat Transfer, 2003, vol. 125, pp. 567–74.

    Article  CAS  Google Scholar 

  6. Y. Xuan, Q. Li, W. Hu: AIChE J., 2003, vol. 49, pp. 1038–43

    Article  CAS  Google Scholar 

  7. J.A. Eastman, S.U.S. Choi, S. Li, and L.J. Thompson: Proc. Symp. on Nanophase and Nanocomposite Materials II, Boston, MA, 1997, Materials Research Society, Pittsburgh, PA, 1997, vol. 457, pp. 3–11

  8. J.A. Eastman, S.U.S. Choi, S. Li, W. Yu, L.J. Thompson: Appl. Phys. Lett., 2001, vol. 78, pp. 718–20

    Article  CAS  Google Scholar 

  9. S. Lee, S.U.S. Choi, S. Li, J.A. Eastman: J. Heat Transfer, 1999, vol. 121, pp. 280–89

    Article  CAS  Google Scholar 

  10. I. Manna, M. Chopkar, P.K. Das: Trans. Ind. Inst. Met., 2005, vol. 58, pp. 2045–55

    Google Scholar 

  11. M. Chopkar, P.K. Das, I. Manna: Scripta Mater., 2006, vol. 55, pp. 549–52.

    Article  CAS  Google Scholar 

  12. T.H. De Keijser, J.I. Langford, E.J. Mittemeijer, A.B.P. Vogels: J. Appl. Cryst., 1982, vol. 15, pp. 308–12

    Article  Google Scholar 

  13. A. Mukherjee: J. Ind. Inst. Sci., 1987, vol. 67, pp. 75–82

    CAS  Google Scholar 

  14. R. W. Powell: J. Scient. Instrum., 1957, vol. 34, pp. 485–90

    Article  Google Scholar 

  15. Measurement of Thermal Conductivity, R.P. Tye, ed., Academic Press, London, 1969, vol. 2, p. 276

  16. Hand Book of Heat and Mass Transfer, 3rd ed., Warren M. Rohenow, James P. Hartnett, and Young I. Cho, eds., McGraw-Hill, New York, NY, 1998

  17. R.L. Hamilton, O.K. Crosser: I & EC Fundam., 1962, vol. 1, pp. 187–91

    Article  CAS  Google Scholar 

  18. X. Wang, X. Xu, S.U.S. Choi: J. Thermophys. Heat Transfer, 1999, vol. 13, pp. 474–80

    Article  CAS  Google Scholar 

  19. J. Koo, C. Kleinstreuer: Int. Commun. Heat Mass Transfer, 2005, vol. 32, pp. 1111–18

    Article  CAS  Google Scholar 

  20. W. Evans, J. Fish, P. Keblinski: Appl. Phys. Lett., 2006, vol. 88 (9), pp. 93116–93120

    Article  CAS  Google Scholar 

  21. W. Yu, S.U.S. Choi: J. Nanoparticle Res., 2003, vol. 5 (1–2), pp. 167–71

    Article  CAS  Google Scholar 

  22. Q.Z. Xue: Phys Lett. A, 2003, vol. 307, pp. 313–17

    Article  CAS  Google Scholar 

  23. M. Chopkar, S. Kumar, D.R. Bhandari, P.K. Das, I. Manna: Mater. Sci. Eng. B, 2007, vol. 139, pp. 141–48

    Article  CAS  Google Scholar 

  24. E.A. Brandes, G.B. Brook: Smithells Metals Reference Book, 7th ed., Butterworth Heinemann, Oxford, United Kingdom, 1992

    Google Scholar 

  25. R. Prasher: Phys. Rev. Lett., 2005, vol. 94, pp. 25901–25904

    Article  CAS  Google Scholar 

  26. G. Domingues, S. Volz, K. Joulain, J.J. Greffet: Phy. Rev. Lett. 2005, vol. 94, pp. 85901–85904

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Partial financial support from the NSTI project of the Department of Science and Technology, New Delhi (Grant No. SR/S5/NM-04/2005), and the All India Council of Technical Education, New Delhi (to M. Chopkar), is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Chopkar.

Additional information

This article is based on a presentation given in the symposium entitled “Materials Behavior: Far from Equilibrium” as part of the Golden Jubilee Celebration of Bhabha Atomic Research Centre, which occurred December 15–16, 2006 in Mumbai, India.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chopkar, M., Sudarshan, S., Das, P. et al. Effect of Particle Size on Thermal Conductivity of Nanofluid. Metall Mater Trans A 39, 1535–1542 (2008). https://doi.org/10.1007/s11661-007-9444-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-007-9444-7

Keywords

Navigation