Skip to main content
Log in

The electrical and physical analysis of Pt gate/Al2O3/p-Si (100) with dual high-k gate oxide thickness for deep submicron complementary metal-oxide-semiconductor device with low power and high reliability

  • Regular Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In order to examine the electrical and physical properties of Al2O3 layers with dual thickness on a chip, Pt gate/Al2O3 with dual thickness/p-type Si (100) samples were fabricated using atomic-layer deposition, separation photolithography, and 100:1 HF wet etching to remove the first Al2O3 layer. Dual metal-oxide-semiconductor (MOS) capacitors with thin (physical thickness, ∼4.5 nm, equivalent oxide thicknesses (EOT): 2.8 nm) and thick (physical thickness, ∼8.2 nm, EOT: 4.3 nm) Al2O3 layers showed a good leakage current density of −5.4×10−6 A/cm2 and −2.5×10−9 A/cm2 at −1 V, respectively; good reliability characteristics as a result of the good surface roughness; low capacitance versus voltage measurements (C-V) hysteresis; and a good interface state density (∼7×1010 cm−2eV−1 near the midgap) as a result of pre-rapid thermal annealing (pre-RTA) after depositing the Al2O3 layer compared with the single MOS capacitors without the pre-RTA. These results suggest that dual Al2O3 layers using the dual gate oxide (DGOX) process can be used for the simultaneous integration of the low power transistors with a thin Al2O3 layer and high reliability regions with a thick Al2O3 layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. B.H. Lee, L. Kang, R. Nieh, W-J. Qi, and J.C. Lee, Appl. Phys. Lett. 76, 1926 (2000).

    Article  CAS  Google Scholar 

  2. G.D. Wilk and R.M. Wallace, Appl. Phys. Lett. 74, 2854 (1999).

    Article  CAS  Google Scholar 

  3. C. Lee, D. Park, N. Jo, C. Hwang, H.J. Kim, and W. Lee, Jpn. J. Appl. Phys. 42, 1892 (2003).

    Article  CAS  Google Scholar 

  4. T.B. Hook, E. Adler, F. Guarin, J. Lukaitis, N. Rovedo, and K. Schruefer, IEEE Trans. Electron. Dev. 48, 1346 (2001).

    Article  CAS  Google Scholar 

  5. C. Lin, S. Biesemans, L.K. Han, K. Houlihan, T. Schml, K. Schruefer, C. Wann, J. Chen, and R. Mahnkopf, Tech. Dig. Int. Electron. Dev. Meeting 135 (2000).

  6. T. Koito, K. Hirano, and K. Nakabeppu, IEEE Trans. Semicond. Manufacturing 15, 429 (2002).

    Article  Google Scholar 

  7. H. Hsu, I. Chen, and L. Jann, IEEE Semiconductor Manufacturing Technology Workshop (Piscataway, NJ: IEEE, 2002), pp. 212–214.

    Google Scholar 

  8. B. Zhou and W.F. Ramirez, J. Electrochem. Soc. 143, 619 (1996).

    Article  CAS  Google Scholar 

  9. H. Kikuyama, M. Waki, M. Miyashita, T. Yabune, and N. Miki, J. Electrochem. Soc. 141, 366 (1994).

    Article  CAS  Google Scholar 

  10. G. Lucovsky, A. Banerjee, B. Hinds, B. Clafin, K. Koh, and H. Yang, J. Vac. Sci. Technol. B 15, 1074 (1997).

    Article  CAS  Google Scholar 

  11. J.D. Plummer, M.D. Deal, and P.B. Griffin, Silicon VLSI Technology (Englewood Cliffs, NJ: Prentice-Hall, Inc., 2000), pp. 223–224.

    Google Scholar 

  12. J.P. Chang, Y.-S. Lin, S. Berger, A. Kepten, R. Bloom, and S. Levy, J. Vac. Sci. Technol. B 19, 2137 (2001).

    Article  CAS  Google Scholar 

  13. W.S. Yang, Y.K. Kim, S.Y. Yang, J.H. Choi, H.S. Park, S.I. Lee, and J.-B. Yoo, Surf. Coating Technol. 131, 79 (2000).

    Article  CAS  Google Scholar 

  14. M. Cho, J. Park, H.B. Park, J. Park, C.S. Hwang, J.-C. Lee, S-J. Oh, J. Jeong, Y.-W. Kim, and J.-H. Lee, J. Appl. Phys. 94, 2563 (2002).

    Article  Google Scholar 

  15. R.S. Johnson, G. Lucovski, and I. Baumvol, J. Vac. Sci. Technol. A 19, 1353 (2001).

    Article  CAS  Google Scholar 

  16. G.D. Wilk, R.M Wallace, and J.M. Anthony, J. Appl. Phys. 89, 5243 (2001).

    Article  CAS  Google Scholar 

  17. T. Hori, Gate Dielectrics and MOS ULSIs (New York: Springer, Inc., 1997), pp. 58–66.

    Google Scholar 

  18. D.-G. Park, H.-J. Cho, K.-Y. Lim, C. Lim, I.-S. Yeo, J.-S. Roh, and J.W. Park, J. Appl. Phys. 89, 6275 (2001).

    Article  CAS  Google Scholar 

  19. H.B. Park, M. Cho, J. Park, C.S. Hwang, J.-C. Lee, and S.-J. Oh, J. Appl. Phys. 94, 1898 (2003).

    Article  CAS  Google Scholar 

  20. G. Lucovsky, Y. Wu, H. Niimi, V. Misra, and J.C. Phillips, Appl. Phys. Lett. 74, 2005 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, C., No, S.Y., Eom, D.I. et al. The electrical and physical analysis of Pt gate/Al2O3/p-Si (100) with dual high-k gate oxide thickness for deep submicron complementary metal-oxide-semiconductor device with low power and high reliability. J. Electron. Mater. 34, 1104–1109 (2005). https://doi.org/10.1007/s11664-005-0237-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-005-0237-8

Key words

Navigation