Skip to main content

Advertisement

Log in

Characterization of Atrophic Changes in the Cerebral Cortex Using Fractal Dimensional Analysis

  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

The purpose of this project is to apply a modified fractal analysis technique to high-resolution T1 weighted magnetic resonance images in order to quantify the alterations in the shape of the cerebral cortex that occur in patients with Alzheimer’s disease. Images were selected from the Alzheimer’s Disease Neuroimaging Initiative database (Control N = 15, Mild-Moderate AD N = 15). The images were segmented using a semi-automated analysis program. Four coronal and three axial profiles of the cerebral cortical ribbon were created. The fractal dimensions (D f) of the cortical ribbons were then computed using a box-counting algorithm. The mean D f of the cortical ribbons from AD patients were lower than age-matched controls on six of seven profiles. The fractal measure has regional variability which reflects local differences in brain structure. Fractal dimension is complementary to volumetric measures and may assist in identifying disease state or disease progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arnold, S. E., Hyman, B. T., Flory, J., Damasio, A. R., & Van Hoesen, G. W. (1991). The topographical and neuroanatomical distribution of neurofibrillary tangles and neuritic plaques in the cerebral cortex of patients with Alzheimer’s disease. Cerebral Cortex (New York, N.Y.), 1(1), 103–116. doi:10.1093/cercor/1.1.103.

    Article  CAS  Google Scholar 

  • Ashburner, J., & Friston, K. J. (2000). Voxel-based morphometry—The methods. NeuroImage, 11(6 Pt 1), 805–821. doi:10.1006/nimg.2000.0582.

    Article  PubMed  CAS  Google Scholar 

  • Casanova, M. F., Goldberg, T. E., Suddath, R. L., Daniel, D. G., Rawlings, R., Lloyd, D. G., et al. (1990). Quantitative shape analysis of the temporal and prefrontal lobes of schizophrenic patients: A magnetic resonance image study. The Journal of Neuropsychiatry and Clinical Neurosciences, 2(4), 363–372.

    PubMed  CAS  Google Scholar 

  • Caserta, F., Eldred, W. D., Fernandez, E., Hausman, R. E., Stanford, L. R., Bulderev, S. V., et al. (1995). Determination of fractal dimension of physiologically characterized neurons in two and three dimensions. Journal of Neuroscience Methods, 56(2), 133–144. doi:10.1016/0165-0270(94)00115-W.

    Article  PubMed  CAS  Google Scholar 

  • Cook, M. J., Free, S. L., Manford, M. R., Fish, D. R., Shorvon, S. D., & Stevens, J. M. (1995). Fractal description of cerebral cortical patterns in frontal lobe epilepsy. European Neurology, 35(6), 327–335. doi:10.1159/000117155.

    Article  PubMed  CAS  Google Scholar 

  • Csernansky, J. G., Wang, L., Miller, J. P., Galvin, J. E., & Morris, J. C. (2005a). Neuroanatomical predictors of response to donepezil therapy in patients with dementia. Archives of Neurology, 62(11), 1718–1722. doi:10.1001/archneur.62.11.1718.

    Article  PubMed  Google Scholar 

  • Csernansky, J. G., Wang, L., Swank, J., Miller, J. P., Gado, M., McKeel, D., et al. (2005b). Preclinical detection of Alzheimer’s disease: Hippocampal shape and volume predict dementia onset in the elderly. NeuroImage, 25(3), 783–792. doi:10.1016/j.neuroimage.2004.12.036.

    Article  PubMed  CAS  Google Scholar 

  • Dale, A. M., Fischl, B., & Sereno, M. I. (1999). Cortical surface-based analysis. I. Segmentation and surface reconstruction. NeuroImage, 9(2), 179–194. doi:10.1006/nimg.1998.0395.

    Article  PubMed  CAS  Google Scholar 

  • Dickerson, B. C., & Sperling, R. A. (2005). Neuroimaging biomarkers for clinical trials of disease-modifying therapies in Alzheimer’s disease. Neurorx, 2(2), 348–360. doi:10.1602/neurorx.2.2.348.

    Article  PubMed  Google Scholar 

  • Dickerson, B. C., Salat, D. H., Greve, D. N., Chua, E. F., Rand-Giovannetti, E., Rentz, D. M., et al. (2005). Increased hippocampal activation in mild cognitive impairment compared to normal aging and AD. Neurology, 65(3), 404–411. doi:10.1212/01.wnl.0000171450.97464.49.

    Article  PubMed  CAS  Google Scholar 

  • Du, A. T., Schuff, N., Kramer, J. H., Rosen, H. J., Gorno-Tempini, M. L., Rankin, K., et al. (2007). Different regional patterns of cortical thinning in Alzheimer’s disease and frontotemporal dementia. Brain, 130(Pt 4), 1159–1166. doi:10.1093/brain/awm016.

    PubMed  Google Scholar 

  • Esteban, F. J., Sepulcre, J., de Mendizabal, N. V., Goni, J., Navas, J., de Miras, J. R., et al. (2007). Fractal dimension and white matter changes in multiple sclerosis. NeuroImage, 36(3), 543–549. doi:10.1016/j.neuroimage.2007.03.057.

    Article  PubMed  Google Scholar 

  • Fernandez, E., & Jelinek, H. F. (2001). Use of fractal theory in neuroscience: Methods, advantages, and potential problems. Methods (San Diego, Calif.), 24(4), 309–321. doi:10.1006/meth.2001.1201.

    CAS  Google Scholar 

  • Fischl, B., & Dale, A. M. (2000). Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proceedings of the National Academy of Sciences of the United States of America, 97(20), 11050–11055. doi:10.1073/pnas.200033797.

    Article  PubMed  CAS  Google Scholar 

  • Fischl, B., Sereno, M. I., & Dale, A. M. (1999). Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system. NeuroImage, 9(2), 195–207. doi:10.1006/nimg.1998.0396.

    Article  PubMed  CAS  Google Scholar 

  • Fischl, B., Salat, D. H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., et al. (2002). Whole brain segmentation: Automated labeling of neuroanatomical structures in the human brain. Neuron, 33(3), 341–355. doi:10.1016/S0896-6273(02)00569-X.

    Article  PubMed  CAS  Google Scholar 

  • Fischl, B., van der Kouwe, A., Destrieux, C., Halgren, E., Segonne, F., Salat, D. H., et al. (2004). Automatically parcellating the human cerebral cortex. Cerebral Cortex (New York, N.Y.), 14(1), 11–22. doi:10.1093/cercor/bhg087.

    Article  Google Scholar 

  • Fjell, A. M., Walhovd, K. B., Reinvang, I., Lundervold, A., Salat, D., Quinn, B. T., et al. (2006). Selective increase of cortical thickness in high-performing elderly—structural indices of optimal cognitive aging. Neuroimage, 29(3), 984–994.

    Article  PubMed  Google Scholar 

  • Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12(3), 189–198. doi:10.1016/0022-3956(75)90026-6.

    Article  PubMed  CAS  Google Scholar 

  • Fox, N. C., Cousens, S., Scahill, R., Harvey, R. J., & Rossor, M. N. (2000). Using serial registered brain magnetic resonance imaging to measure disease progression in Alzheimer disease: Power calculations and estimates of sample size to detect treatment effects. Archives of Neurology, 57(3), 339–344. doi:10.1001/archneur.57.3.339.

    Article  PubMed  CAS  Google Scholar 

  • Good, C. D., Johnsrude, I. S., Ashburner, J., Henson, R. N., Friston, K. J., & Frackowiak, R. S. (2001). A voxel-based morphometric study of ageing in 465 normal adult human brains. NeuroImage, 14(1 Pt 1), 21–36. doi:10.1006/nimg.2001.0786.

    Article  PubMed  CAS  Google Scholar 

  • Guido, G., Styner, M., Shenton, M. E., & Leiberman, J. A. (2001). Shape versus size: Improved understanding of the morphology of brain structures. Lecture Notes in Computer Science, 2208, 24–32.

    Article  Google Scholar 

  • Han, X., Jovicich, J., Salat, D., van der Kouwe, A., Quinn, B., Czanner, S., et al. (2006). Reliability of MRI-derived measurements of human cerebral cortical thickness: The effects of field strength, scanner upgrade and manufacturer. NeuroImage, 32(1), 180–194. doi:10.1016/j.neuroimage.2006.02.051.

    Article  PubMed  Google Scholar 

  • Herbert, D. E., & Croft, P. (1996). Chaos and the changing nature of science and medicine: An introduction: Mobile, AL, April 1995. Woodbury, N.Y.: AIP.

    Google Scholar 

  • Hofman, M. A. (1991). The fractal geometry of convoluted brains. Journal fur Hirnforschung, 32(1), 103–111.

    PubMed  CAS  Google Scholar 

  • Im, K., Lee, J. M., Yoon, U., Shin, Y. W., Hong, S. B., Kim, I. Y., et al. (2006). Fractal dimension in human cortical surface: Multiple regression analysis with cortical thickness, sulcal depth, and folding area. Human Brain Mapping, 27(12), 994–1003. doi:10.1002/hbm.20238.

    Article  PubMed  Google Scholar 

  • Jack, C. R. Jr., Petersen, R. C., Xu, Y. C., O’Brien, P. C., Smith, G. E., Ivnik, R. J., et al. (1999). Prediction of AD with MRI-based hippocampal volume in mild cognitive impairment. Neurology, 52(7), 1397–1403.

    PubMed  Google Scholar 

  • Jack, C. R. Jr., Shiung, M. M., Weigand, S. D., O’Brien, P. C., Gunter, J. L., Boeve, B. F., et al. (2005). Brain atrophy rates predict subsequent clinical conversion in normal elderly and amnestic MCI. Neurology, 65(8), 1227–1231. doi:10.1212/01.wnl.0000180958.22678.91.

    Article  PubMed  Google Scholar 

  • Jiang, J., Zhu, W., Shi, F., Zhang, Y., Lin, L., & Jiang, T. (2008). A robust and accurate algorithm for estimating the complexity of the cortical surface. Journal of Neuroscience Methods, 172(1), 122–130. doi:10.1016/j.jneumeth.2008.04.018.

    Article  PubMed  Google Scholar 

  • Joshi, S., Davis, B., Jomier, M., & Gerig, G. (2004). Unbiased diffeomorphic atlas construction for computational anatomy. NeuroImage, 23(Suppl 1), S151–S160. doi:10.1016/j.neuroimage.2004.07.068.

    Article  PubMed  Google Scholar 

  • Killiany, R. J., Gomez-Isla, T., Moss, M., Kikinis, R., Sandor, T., Jolesz, F., et al. (2000). Use of structural magnetic resonance imaging to predict who will get Alzheimer’s disease. Annals of Neurology, 47(4), 430–439. doi:10.1002/1531-8249(200004)47:4<430::AID-ANA5>3.0.CO;2-I.

    Article  PubMed  CAS  Google Scholar 

  • Kiselev, V. G., Hahn, K. R., & Auer, D. P. (2003). Is the brain cortex a fractal? NeuroImage, 20(3), 1765–1774. doi:10.1016/S1053-8119(03)00380-X.

    Article  PubMed  Google Scholar 

  • Korf, E. S., Wahlund, L. O., Visser, P. J., & Scheltens, P. (2004). Medial temporal lobe atrophy on MRI predicts dementia in patients with mild cognitive impairment. Neurology, 63(1), 94–100.

    PubMed  Google Scholar 

  • Lee, J. M., Yoon, U., Kim, J. J., Kim, I. Y., Lee, D. S., Kwon, J. S., et al. (2004). Analysis of the hemispheric asymmetry using fractal dimension of a skeletonized cerebral surface. IEEE Transactions on Bio-Medical Engineering, 51(8), 1494–1498. doi:10.1109/TBME.2004.831543.

    Article  PubMed  Google Scholar 

  • Liu, J. Z., Zhang, L. D., & Yue, G. H. (2003). Fractal dimension in human cerebellum measured by magnetic resonance imaging. Biophysical Journal, 85(6), 4041–4046.

    Article  PubMed  CAS  Google Scholar 

  • Majumdar, S., & Prasad, R. R. (1988). The fractal dimension of cerebral surfaces using magnetic resonance imaging. Computers in Physics, 2(6), 69–73.

    Google Scholar 

  • Mandelbrot, B. B. (1977). Fractals: Form, chance, and dimension. San Francisco: W. H. Freeman.

    Google Scholar 

  • Mandelbrot, B. B. (1982). The fractal geometry of nature. San Francisco: W.H. Freeman.

    Google Scholar 

  • Moorhead, T. W., Harris, J. M., Stanfield, A. C., Job, D. E., Best, J. J., Johnstone, E. C., et al. (2006). Automated computation of the Gyrification Index in prefrontal lobes: Methods and comparison with manual implementation. NeuroImage, 31(4), 1560–1566. doi:10.1016/j.neuroimage.2006.02.025.

    Article  PubMed  Google Scholar 

  • Morris, J. C. (1997). Clinical dementia rating: A reliable and valid diagnostic and staging measure for dementia of the Alzheimer type. International Psychogeriatrics, 9(Suppl 1), 173–176, discussion 177–178. doi:10.1017/S1041610297004870.

    Article  PubMed  Google Scholar 

  • Mueller, S. G., Weiner, M. W., Thal, L. J., Petersen, R. C., Jack, C., Jagust, W., et al. (2005). The Alzheimer’s disease neuroimaging initiative. Neuroimaging Clinics of North America, 15(4), 869–877, xi–xii. doi:10.1016/j.nic.2005.09.008.

    Article  PubMed  Google Scholar 

  • Rademacher, J., Caviness, V. S. Jr., Steinmetz, H., & Galaburda, A. M. (1993). Topographical variation of the human primary cortices: Implications for neuroimaging, brain mapping, and neurobiology. Cerebral Cortex (New York, N.Y.), 3(4), 313–329. doi:10.1093/cercor/3.4.313.

    Article  CAS  Google Scholar 

  • Salamon, N., Sicotte, N., Mongkolwat, P., Shattuck, D., & Salamon, G. (2005). The human cerebral cortex on MRI: Value of the coronal plane. Surgical and Radiologic Anatomy, 27(5), 431–443. doi:10.1007/s00276-005-0022-7.

    Article  PubMed  CAS  Google Scholar 

  • Smith, T. G. Jr., Marks, W. B., Lange, G. D., Sheriff, W. H. Jr., & Neale, E. A. (1989). A fractal analysis of cell images. Journal of Neuroscience Methods, 27(2), 173–180. doi:10.1016/0165-0270(89)90100-3.

    Article  PubMed  Google Scholar 

  • Takayasu, H. (1990). Fractals in the physical sciences. Manchester, NY: Manchester University Press, Distributed exclusively in the USA and Canada by St. Martin’s Press.

    Google Scholar 

  • Thompson, P. M., Moussai, J., Zohoori, S., Goldkorn, A., Khan, A. A., Mega, M. S., et al. (1998). Cortical variability and asymmetry in normal aging and Alzheimer’s disease. Cerebral Cortex (New York, N.Y.), 8(6), 492–509. doi:10.1093/cercor/8.6.492.

    Article  CAS  Google Scholar 

  • Thompson, P. M., Mega, M. S., Woods, R. P., Zoumalan, C. I., Lindshield, C. J., Blanton, R. E., et al. (2001). Cortical change in Alzheimer’s disease detected with a disease-specific population-based brain atlas. Cerebral Cortex (New York, N.Y.), 11(1), 1–16. doi:10.1093/cercor/11.1.1.

    Article  CAS  Google Scholar 

  • Thompson, P. M., Hayashi, K. M., Dutton, R. A., Chiang, M. C., Leow, A. D., Sowell, E. R., et al. (2007). Tracking Alzheimer’s disease. Annals of the New York Academy of Sciences, 1097, 183–214. doi:10.1196/annals.1379.017.

    Article  PubMed  Google Scholar 

  • Toga, A. W., & Thompson, P. M. (2002). New approaches in brain morphometry. The American Journal of Geriatric Psychiatry, 10(1), 13–23. doi:10.1176/appi.ajgp.10.1.13.

    PubMed  Google Scholar 

  • Visser, P. J., Scheltens, P., Verhey, F. R., Schmand, B., Launer, L. J., Jolles, J., et al. (1999). Medial temporal lobe atrophy and memory dysfunction as predictors for dementia in subjects with mild cognitive impairment. Journal of Neurology, 246(6), 477–485. doi:10.1007/s004150050387.

    Article  PubMed  CAS  Google Scholar 

  • Walhovd, K. B., Fjell, A. M., Reinvang, I., Lundervold, A., Dale, A. M., Quinn, B. T., et al. (2005). Neuroanatomical aging: Universal but not uniform. Neurobiology of Aging, 26(9), 1279–1282. doi:10.1016/j.neurobiolaging.2005.05.018.

    Article  Google Scholar 

  • Wang, L., Swank, J. S., Glick, I. E., Gado, M. H., Miller, M. I., Morris, J. C., et al. (2003). Changes in hippocampal volume and shape across time distinguish dementia of the Alzheimer type from healthy aging. NeuroImage, 20(2), 667–682. doi:10.1016/S1053-8119(03)00361-6.

    Article  PubMed  CAS  Google Scholar 

  • Yu, P., Grant, P. E., Qi, Y., Han, X., Segonne, F., Pienaar, R., et al. (2007). Cortical surface shape analysis based on spherical wavelets. IEEE Transactions on Medical Imaging, 26(4), 582–597. doi:10.1109/TMI.2007.892499.

    Article  PubMed  Google Scholar 

  • Zhang, L., Liu, J. Z., Dean, D., Sahgal, V., & Yue, G. H. (2006). A three-dimensional fractal analysis method for quantifying white matter structure in human brain. Journal of Neuroscience Methods, 150(2), 242–253. doi:10.1016/j.jneumeth.2005.06.021.

    Article  PubMed  Google Scholar 

  • Zhang, L., Dean, D., Liu, J. Z., Sahgal, V., Wang, X., & Yue, G. H. (2007). Quantifying degeneration of white matter in normal aging using fractal dimension. Neurobiology of Aging, 28, 1543–1555.

    Article  PubMed  CAS  Google Scholar 

  • Zilles, K., Armstrong, E., Schleicher, A., & Kretschmann, H. J. (1988). The human pattern of gyrification in the cerebral cortex. Anatomy and Embryology, 179(2), 173–179. doi:10.1007/BF00304699.

    Article  PubMed  CAS  Google Scholar 

  • Zilles, K., Armstrong, E., Moser, K. H., Schleicher, A., & Stephan, H. (1989). Gyrification in the cerebral cortex of primates. Brain, Behavior and Evolution, 34(3), 143–150. doi:10.1159/000116500.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This project has been funded by generous support from the UNCF*Merck Science Initiative and the Harold Amos Medical Faculty Development Program (a program of the Robert Wood Johnson Foundation), NIH grant NS34189, and by NIA grant 5P30AG012300. In addition, the authors would like to thank Dr. John Hart for his helpful comments and overall tremendous support of this project. We also thank Paul Bourke, Dr. Mike Kraut, Ms. Sharon O’Meara, and the staff at the Center for BrainHealth at the University of Texas at Dallas for providing support and infrastructure for this work to proceed. Many thanks are also given to Dr. Roger Rosenberg and the faculty and staff of the Alzheimer’s Disease Center at the University of Texas Southwestern Medical Center for providing a forum to discuss ideas developed in this paper. We also thank Dr. Verne Caviness and the members of the Center for Morphometric Analysis at Massachusetts General Hospital for support in learning FreeSurfer and technical assistance with the project in general. Data collection and sharing for this project was funded by the Alzheimer’s Disease Neuroimaging Initiative (ADNI; Principal Investigator: Michael Weiner; NIH grant U01 AG024904). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering (NIBIB), and through generous contributions from the following: Pfizer Inc., Wyeth Research, Bristol-Myers Squibb, Eli Lilly and Company, GlaxoSmithKline, Merck & Co. Inc., AstraZeneca AB, Novartis Pharmaceuticals Corporation, Alzheimer’s Association, Eisai Global Clinical Development, Elan Corporation plc, Forest Laboratories, and the Institute for the Study of Aging, with participation from the U.S. Food and Drug Administration. Industry partnerships are coordinated through the Foundation for the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Richard D. King.

Additional information

Data used in the preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (www.loni.ucla.edu/ADNI). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in the analysis or writing of this report.

Rights and permissions

Reprints and permissions

About this article

Cite this article

King, R.D., George, A.T., Jeon, T. et al. Characterization of Atrophic Changes in the Cerebral Cortex Using Fractal Dimensional Analysis. Brain Imaging and Behavior 3, 154–166 (2009). https://doi.org/10.1007/s11682-008-9057-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-008-9057-9

Keywords

Navigation