Skip to main content

Advertisement

Log in

Genome-wide pathway analysis of memory impairment in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort implicates gene candidates, canonical pathways, and networks

  • ADNI: Friday Harbor 2011 Workshop SPECIAL ISSUE
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

Memory deficits are prominent features of mild cognitive impairment (MCI) and Alzheimer’s disease (AD). The genetic architecture underlying these memory deficits likely involves the combined effects of multiple genetic variants operative within numerous biological pathways. In order to identify functional pathways associated with memory impairment, we performed a pathway enrichment analysis on genome-wide association data from 742 Alzheimer’s Disease Neuroimaging Initiative (ADNI) participants. A composite measure of memory was generated as the phenotype for this analysis by applying modern psychometric theory to item-level data from the ADNI neuropsychological test battery. Using the GSA-SNP software tool, we identified 27 canonical, expertly-curated pathways with enrichment (FDR-corrected p-value < 0.05) against this composite memory score. Processes classically understood to be involved in memory consolidation, such as neurotransmitter receptor-mediated calcium signaling and long-term potentiation, were highly represented among the enriched pathways. In addition, pathways related to cell adhesion, neuronal differentiation and guided outgrowth, and glucose- and inflammation-related signaling were also enriched. Among genes that were highly-represented in these enriched pathways, we found indications of coordinated relationships, including one large gene set that is subject to regulation by the SP1 transcription factor, and another set that displays co-localized expression in normal brain tissue along with known AD risk genes. These results 1) demonstrate that psychometrically-derived composite memory scores are an effective phenotype for genetic investigations of memory impairment and 2) highlight the promise of pathway analysis in elucidating key mechanistic targets for future studies and for therapeutic interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aisa, B., Gil-Bea, F. J., Solas, M., García-Alloza, M., Chen, C. P., Lai, M. K., et al. (2010). Altered NCAM expression associated with the cholinergic system in Alzheimer’s disease. Journal of Alzheimer’s Disease, 20(2), 659–668. doi:10.3233/JAD-2010-1398.

    PubMed  CAS  Google Scholar 

  • Aisen, P. S., Petersen, R. C., Donohue, M. C., Gamst, A., Raman, R., Thomas, R. G., et al. (2010). Clinical core of the Alzheimer’s disease neuroimaging initiative: progress and plans. Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association, 6(3), 239–246.

    Article  Google Scholar 

  • Andreano, J. M., & Cahill, L. (2009). Sex influences on the neurobiology of learning and memory. Learning and Memory, 16(4), 248–266. doi:10.1101/lm.918309.

    Article  PubMed  Google Scholar 

  • Arese, M., Serini, G., & Bussolino, F. (2011). Nervous vascular parallels: axon guidance and beyond. [Research support, non-U.S. gov’t, review]. International Journal of Developmental Biology, 55(4–5), 439–445. doi:10.1387/ijdb.103242ma.

    Article  PubMed  CAS  Google Scholar 

  • Baranzini, S. E., Srinivasan, R., Khankhanian, P., Okuda, D. T., Nelson, S. J., Matthews, P. M., et al. (2010). Genetic variation influences glutamate concentrations in brains of patients with multiple sclerosis. [Research support, N.I.H., extramural, research support, non-U.S. gov’t]. Brain, 133(9), 2603–2611. doi:10.1093/brain/awq192.

    Article  PubMed  Google Scholar 

  • Barbeau, E. J., Didic, M., Joubert, S., Guedj, E., Koric, L., Felician, O., et al. (2011). Extent and neural basis of semantic memory impairment in mild cognitive impairment. Journal of Alzheimer’s Disease. doi:10.3233/JAD-2011-110989.

  • Barrett, J. C., Fry, B., Maller, J., & Daly, M. J. (2005). Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics, 21(2), 263–265. doi:10.1093/bioinformatics/bth457.

    Article  PubMed  CAS  Google Scholar 

  • Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate—a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B-Methodological, 57(1), 289–300.

    Google Scholar 

  • Bertram, L., McQueen, M. B., Mullin, K., Blacker, D., & Tanzi, R. E. (2007). Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database. [10.1038/ng1934]. Nature Genetics, 39(1), 17–23. http://www.nature.com/ng/journal/v39/n1/suppinfo/ng1934_S1.html.

    Article  PubMed  CAS  Google Scholar 

  • Bertram, L., Lill, C. M., & Tanzi, R. E. (2010). The genetics of Alzheimer disease: back to the future. Neuron, 68(2), 270–281.

    Article  PubMed  CAS  Google Scholar 

  • Bookheimer, S., & Burggren, A. (2009). APOE-4 genotype and neurophysiological vulnerability to Alzheimer’s and cognitive aging. Annual Review of Clinical Psychology, 5(1), 343–362. doi:10.1146/annurev.clinpsy.032408.153625.

    Article  PubMed  Google Scholar 

  • Buchman, A. S., & Bennett, D. A. (2012). Amyloid pathology in persons with “normal” cognition. Neurology, 78(4), 228–229. doi:10.1212/WNL.0b013e31824367c2.

    Article  PubMed  Google Scholar 

  • Cantor, R. M., Lange, K., & Sinsheimer, J. S. (2010). Prioritizing GWAS results: a review of statistical methods and recommendations for their application. American Journal of Human Genetics, 86(1), 6–22. doi:10.1016/j.ajhg.2009.11.017.

    Article  PubMed  CAS  Google Scholar 

  • Chee Seng, K., En Yun, L., Yudi, P., & Kee Seng, C. (2010). The pursuit of genome-wide association studies: where are we now? [Article]. Journal of Human Genetics, 55(4), 195–206. doi:10.1038/jhg.2010.19.

    Article  Google Scholar 

  • Chen, K.-P., & Dou, F. (2012). Selective interaction of amyloid precursor protein with different isoforms of neural cell adhesion molecule. Journal of Molecular Neuroscience, 46(1), 203–209. doi:10.1007/s12031-011-9578-3.

    Article  PubMed  CAS  Google Scholar 

  • Cockrell, J. R., & Folstein, M. F. (1988). Mini-Mental State Examination (MMSE). Psychopharmacology Bulletin, 24(4), 689–692.

    PubMed  CAS  Google Scholar 

  • Collingridge, G. L., Peineau, S., Howland, J. G., & Wang, Y. T. (2010). Long-term depression in the CNS. [10.1038/nrn2867]. Nature Reviews Neuroscience, 11(7), 459–473. http://www.nature.com/nrn/journal/v11/n7/suppinfo/nrn2867_S1.html.

    Article  PubMed  CAS  Google Scholar 

  • Corder, E., Saunders, A., Strittmatter, W., Schmechel, D., Gaskell, P., Small, G., et al. (1993). Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science, 261(5123), 921–923. doi:10.1126/science.8346443.

    Article  PubMed  CAS  Google Scholar 

  • Corvin, A. P. (2010). Neuronal cell adhesion genes: key players in risk for schizophrenia, bipolar disorder and other neurodevelopmental brain disorders? Cell Adhesion & Migration, 4(4), 511–514.

    Article  Google Scholar 

  • Crane, P. K., Carle, A., Gibbons, L. E., Insel, P., Mackin, R. S., Gross, A., et al. (2012). Development and assessment of a composite score for memory in the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Brain Imaging Behav. doi:10.1007/s11682-012-9186-z.

  • Elbers, C. C., van Eijk, K. R., Franke, L., Mulder, F., van der Schouw, Y. T., Wijmenga, C., et al. (2009). Using genome-wide pathway analysis to unravel the etiology of complex diseases. Genetic Epidemiology, 33(5), 419–431. doi:10.1002/gepi.20395.

    Article  PubMed  Google Scholar 

  • Emilio, B. (2010). Microglia: activation in acute and chronic inflammatory states and in response to cardiovascular dysfunction. The International Journal of Biochemistry & Cell Biology, 42(10), 1580–1585. doi:10.1016/j.biocel.2010.07.005.

    Article  Google Scholar 

  • Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). Mini-mental state. A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12(3), 189–198.

    Article  PubMed  CAS  Google Scholar 

  • Fridley, B. L., & Biernacka, J. M. (2011). Gene set analysis of SNP data: benefits, challenges, and future directions. [Research support, N.I.H., extramural, review]. European Journal of Human Genetics, 19(8), 837–843. doi:10.1038/ejhg.2011.57.

    Article  PubMed  CAS  Google Scholar 

  • Goeman, J. J., & Bühlmann, P. (2007). Analyzing gene expression data in terms of gene sets: methodological issues. Bioinformatics, 23(8), 980–987. doi:10.1093/bioinformatics/btm051.

    Article  PubMed  CAS  Google Scholar 

  • Gui, H., Li, M., Sham, P., & Cherny, S. (2011). Comparisons of seven algorithms for pathway analysis using the WTCCC Crohn’s Disease dataset. BMC Research Notes, 4(1), 386.

    Article  PubMed  Google Scholar 

  • Gunstad, J., Spitznagel, M. B., Luyster, F., Cohen, R. A., & Paul, R. H. (2007). Handedness and cognition across the healthy lifespan. International Journal of Neuroscience, 117(4), 477–485. doi:10.1080/00207450600773483.

    Article  PubMed  Google Scholar 

  • Han, M.-R., Schellenberg, G., Wang, L.-S., & Initiative, t. A. s. D. N. (2010). Genome-wide association reveals genetic effects on human Abeta42 and tau protein levels in cerebrospinal fluids: a case control study. BMC Neurology, 10(1), 90.

    Article  PubMed  Google Scholar 

  • Hibar, D. P., Stein, J. L., Kohannim, O., Jahanshad, N., Saykin, A. J., Shen, L., et al. (2011). Voxelwise gene-wide association study (vGeneWAS): multivariate gene-based association testing in 731 elderly subjects. NeuroImage, 56(4), 1875–1891. doi:10.1016/j.neuroimage.2011.03.077.

    Article  PubMed  Google Scholar 

  • Hirschhorn, J. N. (2009). Genomewide association studies—illuminating biologic pathways. The New England Journal of Medicine, 360(17), 1699–1701. doi:10.1056/NEJMp0808934.

    Article  PubMed  CAS  Google Scholar 

  • Ho, V. M., Lee, J.-A., & Martin, K. C. (2011). The cell biology of synaptic plasticity. Science, 334(6056), 623–628. doi:10.1126/science.1209236.

    Article  PubMed  CAS  Google Scholar 

  • Holmans, P. (2010). Statistical methods for pathway analysis of genome-wide data for association with complex genetic traits. Advances in Genetics, 72, 141–179.

    Article  PubMed  Google Scholar 

  • International HapMap, C. (2003). The International HapMap Project. [Multicenter study, research support, non-U.S. gov’t, research support, U.S. gov’t, P.H.S.]. Nature, 426(6968), 789–796. doi:10.1038/nature02168.

  • International Human Genome Sequencing Consortium. (2004). Finishing the euchromatic sequence of the human genome. [10.1038/nature03001]. Nature, 431(7011), 931–945. http://www.nature.com/nature/journal/v431/n7011/suppinfo/nature03001_S1.html.

    Article  Google Scholar 

  • Izzi, L., & Charron, F. (2011). Midline axon guidance and human genetic disorders. Clinical Genetics, 80(3), 226–234. doi:10.1111/j.1399-0004.2011.01735.x.

    Article  PubMed  CAS  Google Scholar 

  • Jack, C. R., Lowe, V. J., Weigand, S. D., Wiste, H. J., Senjem, M. L., Knopman, D. S., et al. (2009). Serial PIB and MRI in normal, mild cognitive impairment and Alzheimer’s disease: implications for sequence of pathological events in Alzheimer’s disease. Brain. doi:10.1093/brain/awp062.

  • Johnson, S. C., La Rue, A., Hermann, B. P., Xu, G., Koscik, R. L., Jonaitis, E. M., et al. (2011). The effect of TOMM40 poly-T length on gray matter volume and cognition in middle-aged persons with APOE ε3/ε3 genotype. Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association, 7(4), 456–465.

    Article  CAS  Google Scholar 

  • Kantarci, K., Lowe, V., Przybelski, S. A., Weigand, S. D., Senjem, M. L., Ivnik, R. J., et al. (2012). APOE modifies the association between Aβ load and cognition in cognitively normal older adults. Neurology, 78(4), 232–240. doi:10.1212/WNL.0b013e31824365ab.

    Article  PubMed  CAS  Google Scholar 

  • Kapranov, P., Willingham, A. T., & Gingeras, T. R. (2007). Genome-wide transcription and the implications for genomic organization. [Research support, N.I.H., extramural, research support, non-U.S. gov’t, review]. Nature Reviews Genetics, 8(6), 413–423. doi:10.1038/nrg2083.

    Article  PubMed  CAS  Google Scholar 

  • Kim, S. Y., & Volsky, D. J. (2005). PAGE: parametric analysis of gene set enrichment. [Comparative study, research support, N.I.H., extramural, research support, U.S. gov’t, P.H.S.]. BMC Bioinformatics, 6, 144. doi:10.1186/1471-2105-6-144.

    Article  PubMed  Google Scholar 

  • Lezak, M. D. (2004). Neuropsychological assessment. Oxford University Press.

  • Li, J., Humphreys, K., Heikkinen, T., Aittomäki, K., Blomqvist, C., Pharoah, P., et al. (2011). A combined analysis of genome-wide association studies in breast cancer. Breast Cancer Research and Treatment, 126(3), 717–727. doi:10.1007/s10549-010-1172-9.

    Article  PubMed  CAS  Google Scholar 

  • Liu, G., Jiang, Y., Wang, P., Feng, R., Jiang, N., Chen, X., et al. (2012). Cell adhesion molecules contribute to Alzheimer’s disease: multiple pathway analyses of two genome-wide association studies. Journal of Neurochemistry, 120(1), 190–198. doi:10.1111/j.1471-4159.2011.07547.x.

    Article  PubMed  CAS  Google Scholar 

  • Luciano, M., Hansell, N. K., Lahti, J., Davies, G., Medland, S. E., Räikkönen, K., et al. (2011). Whole genome association scan for genetic polymorphisms influencing information processing speed. Biological Psychology, 86(3), 193–202. doi:10.1016/j.biopsycho.2010.11.008.

    Article  PubMed  Google Scholar 

  • Luo, L., Peng, G., Zhu, Y., Dong, H., Amos, C. I., & Xiong, M. (2010). Genome-wide gene and pathway analysis. European Journal of Human Genetics, 18(9), 1045–1053. doi:10.1038/ejhg.2010.62.

    Article  PubMed  CAS  Google Scholar 

  • Maloney, B., Ge, Y. W., Petersen, R. C., Hardy, J., Rogers, J. T., Perez-Tur, J., et al. (2010). Functional characterization of three single-nucleotide polymorphisms present in the human APOE promoter sequence: differential effects in neuronal cells and on DNA–protein interactions. [Research support, N.I.H., extramural, research support, non-U.S. gov’t]. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 153B(1), 185–201. doi:10.1002/ajmg.b.30973.

    CAS  Google Scholar 

  • Meda, S. A., Narayanan, B., Liu, J., Perrone-Bizzozero, N. I., Stevens, M. C., Calhoun, V. D., et al. (2012). A large scale multivariate parallel ICA method reveals novel imaging–genetic relationships for Alzheimer’s disease in the ADNI cohort. Neuroimage, (0), doi:10.1016/j.neuroimage.2011.12.076.

  • Mohs, R. C., Knopman, D., Petersen, R. C., Ferris, S. H., Ernesto, C., Grundman, M., et al. (1997). Development of cognitive instruments for use in clinical trials of antidementia drugs: additions to the Alzheimer’s Disease Assessment Scale that broaden its scope. The Alzheimer’s Disease Cooperative Study. [Research support, U.S. gov’t, P.H.S.]. Alzheimer Disease and Associated Disorders, 11(Suppl 2), S13–S21.

    Article  PubMed  Google Scholar 

  • Nam, D., Kim, J., Kim, S.-Y., & Kim, S. (2010). GSA-SNP: a general approach for gene set analysis of polymorphisms. Nucleic Acids Research, 38(Suppl 2), W749–W754. doi:10.1093/nar/gkq428.

    Article  PubMed  CAS  Google Scholar 

  • Negash, S., Bennett, D. A., Wilson, R. S., Schneider, J. A., & Arnold, S. E. (2011). Cognition and neuropathology in aging: multidimensional perspectives from the Rush Religious Orders Study and Rush Memory and Aging Project. [Review]. Current Alzheimer Research, 8(4), 336–340.

    Article  PubMed  CAS  Google Scholar 

  • Pawlowski, T. L., & Huentelman, M. J. (2011). Identification of a common variant affecting human episodic memory performance using a pooled genome-wide association approach: A case study of disease gene identification. In J. K. DiStefano (Ed.), Methods in molecular biology (vol. 700, pp. 261–269). Humana Press.

  • Penrod, N. M., Cowper-Sal-lari, R., & Moore, J. H. (2011). Systems genetics for drug target discovery. [Research support, N.I.H., extramural]. Trends in Pharmacological Sciences, 32(10), 623–630. doi:10.1016/j.tips.2011.07.002.

    Article  PubMed  CAS  Google Scholar 

  • Portin, P. (2009). The elusive concept of the gene. [Review]. Hereditas, 146(3), 112–117. doi:10.1111/j.1601-5223.2009.02128.x.

    Article  PubMed  Google Scholar 

  • Potkin, S. G., Guffanti, G., Lakatos, A., Turner, J. A., Kruggel, F., Fallon, J. H., et al. (2009). Hippocampal atrophy as a quantitative trait in a genome-wide association study identifying novel susceptibility genes for Alzheimer’s disease. [Research support, N.I.H., extramural, research support, non-U.S. gov’t, research support, U.S. gov’t, P.H.S.]. PLoS One, 4(8), e6501. doi:10.1371/journal.pone.0006501.

    Article  PubMed  Google Scholar 

  • Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A., Bender, D., Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A., Bender, D., et al. (2007). PLINK: a tool set for whole-genome association and population-based linkage analyses. [Research support, N.I.H., extramural, research support, non-U.S. gov’t]. American Journal of Human Genetics, 81(3), 559–575. doi:10.1086/519795.

    Article  PubMed  CAS  Google Scholar 

  • Ramanan, V. K., Shen, L., Moore, J. H., & Saykin, A. J. (2012). Pathway analysis of genomic data: concepts, methods, and prospects for future development. Trends in Genetics, 28(7), 323–332.

    Article  PubMed  CAS  Google Scholar 

  • Reeve, B. B., Hays, R. D., Bjorner, J. B., Cook, K. F., Crane, P. K., Teresi, J. A., et al. (2007). Psychometric evaluation and calibration of health-related quality of life item banks: plans for the Patient-Reported Outcomes Measurement Information System (PROMIS). [Research support, N.I.H., extramural]. Medical Care, 45(5 Suppl 1), S22–S31. doi:10.1097/01.mlr.0000250483.85507.04.

    Article  PubMed  Google Scholar 

  • Rey, A. (1964). L’examen clinique en psychologie. Paris: Presses Universitaires de France.

    Google Scholar 

  • Roses, A. D., Lutz, M. W., Amrine-Madsen, H., Saunders, A. M., Crenshaw, D. G., Sundseth, S. S., et al. (2010). A TOMM40 variable-length polymorphism predicts the age of late-onset Alzheimer’s disease. The Pharmacogenomics Journal, 10(5), 375–384. http://www.nature.com/tpj/journal/v10/n5/suppinfo/tpj200969s1.html.

    Article  PubMed  CAS  Google Scholar 

  • Rossner, S., Sastre, M., Bourne, K., & Lichtenthaler, S. F. (2006). Transcriptional and translational regulation of BACE1 expression—implications for Alzheimer’s disease. [Research support, non-U.S. gov’t, review]. Progress in Neurobiology, 79(2), 95–111. doi:10.1016/j.pneurobio.2006.06.001.

    Article  PubMed  CAS  Google Scholar 

  • Santpere, G., Nieto, M., Puig, B., & Ferrer, I. (2006). Abnormal Sp1 transcription factor expression in Alzheimer disease and tauopathies. [Comparative study, research support, non-U.S. gov’t]. Neuroscience Letters, 397(1–2), 30–34. doi:10.1016/j.neulet.2005.11.062.

    Article  PubMed  CAS  Google Scholar 

  • Sawcer, S., Hellenthal, G., Pirinen, M., Spencer, C., Patsopoulos, N., Moutsianas, L., Sawcer, S., Hellenthal, G., Pirinen, M., Spencer, C., Patsopoulos, N., Moutsianas, L., et al. (2011). Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. [10.1038/nature10251]. Nature, 476(7359), 214–219. doi:10.1038/nature10251.

    Article  PubMed  CAS  Google Scholar 

  • Saykin, A. J., Shen, L., Foroud, T. M., Potkin, S. G., Swaminathan, S., Kim, S., et al. (2010). Alzheimer’s Disease Neuroimaging Initiative biomarkers as quantitative phenotypes: genetics core aims, progress, and plans. Alzheimer’s & Dementia, 6(3), 265–273. doi:10.1016/j.jalz.2010.03.013.

    Article  CAS  Google Scholar 

  • Schadt, E. E. (2009). Molecular networks as sensors and drivers of common human diseases. [Review]. Nature, 461(7261), 218–223. doi:10.1038/nature08454.

    Article  PubMed  CAS  Google Scholar 

  • Shen, L., Kim, S., Risacher, S. L., Nho, K., Swaminathan, S., West, J. D., et al. (2010). Whole genome association study of brain-wide imaging phenotypes for identifying quantitative trait loci in MCI and AD: a study of the ADNI cohort. [Research support, N.I.H., extramural, research support, non-U.S. gov’t, research support, U.S. gov’t, P.H.S.]. NeuroImage, 53(3), 1051–1063. doi:10.1016/j.neuroimage.2010.01.042.

    Article  PubMed  CAS  Google Scholar 

  • Sloan, C. D., Shen, L., West, J. D., Wishart, H. A., Flashman, L. A., Rabin, L. A., et al. (2010). Genetic pathway-based hierarchical clustering analysis of older adults with cognitive complaints and amnestic mild cognitive impairment using clinical and neuroimaging phenotypes. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 153B(5), 1060–1069. doi:10.1002/ajmg.b.31078.

    Article  CAS  Google Scholar 

  • Stein, J. L., Hua, X., Lee, S., Ho, A. J., Leow, A. D., Toga, A. W., et al. (2010). Voxelwise genome-wide association study (vGWAS). [Research support, N.I.H., extramural research support, non-U.S. gov’t research support, U.S. gov’t, P.H.S.]. NeuroImage, 53(3), 1160–1174. doi:10.1016/j.neuroimage.2010.02.032.

    Article  PubMed  CAS  Google Scholar 

  • Stein, J. L., Hua, X., Morra, J. H., Lee, S., Hibar, D. P., Ho, A. J., et al. (2010). Genome-wide analysis reveals novel genes influencing temporal lobe structure with relevance to neurodegeneration in Alzheimer’s disease. [Research support, N.I.H., extramural research support, non-U.S. gov’t]. NeuroImage, 51(2), 542–554. doi:10.1016/j.neuroimage.2010.02.068.

    Article  PubMed  CAS  Google Scholar 

  • Strittmatter, W. J., Saunders, A. M., Schmechel, D., Pericak-Vance, M., Enghild, J., Salvesen, G. S., et al. (1993). Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proceedings of the National Academy of Sciences, 90(5), 1977–1981.

    Article  CAS  Google Scholar 

  • Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A., et al. (2005). Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences of the United States of America, 102(43), 15545–15550. doi:10.1073/pnas.0506580102.

    Article  PubMed  CAS  Google Scholar 

  • Sweatt, J. D. (2009). Mechanisms of memory, 2nd edition. Academic Press.

  • Sweatt, J. D. (2011). Neuroscience. Creating stable memories. Science, 331(6019), 869–870. doi:10.1126/science.1202283.

    Article  PubMed  CAS  Google Scholar 

  • Wang, K., Li, M., & Hakonarson, H. (2010). Analysing biological pathways in genome-wide association studies. [10.1038/nrg2884]. Nature Reviews Genetics, 11(12), 843–854.

    Article  PubMed  CAS  Google Scholar 

  • Wechsler, D. (1987). Wechsler memory scale—revised. New York: Psychological Association.

    Google Scholar 

  • Weiner, M. W., Aisen, P. S., Jack, C. R., Jr., Jagust, W. J., Trojanowski, J. Q., Shaw, L., et al. (2010). The Alzheimer’s disease neuroimaging initiative: progress report and future plans. Alzheimer’s & Dementia, 6(3), 202–211.e207. doi:10.1016/j.jalz.2010.03.007.

    Article  Google Scholar 

  • Wijsman, E. M., Pankratz, N. D., Choi, Y., Rothstein, J. H., Faber, K. M., Cheng, R., et al. (2011). Genome-wide association of familial late-onset Alzheimer’s disease replicates BIN1 and CLU and nominates CUGBP2 in interaction with APOE. PLoS Genetics, 7(2), e1001308. doi:10.1371/journal.pgen.1001308.

    Article  PubMed  CAS  Google Scholar 

  • Yirmiya, R., & Goshen, I. (2011). Immune modulation of learning, memory, neural plasticity and neurogenesis. Brain, Behavior, and Immunity, 25(2), 181–213. doi:10.1016/j.bbi.2010.10.015.

    Article  PubMed  CAS  Google Scholar 

  • Yu, H. T., Chan, W. W., Chai, K. H., Lee, C. W., Chang, R. C., Yu, M. S., et al. (2010). Transcriptional regulation of human FE65, a ligand of Alzheimer’s disease amyloid precursor protein, by Sp1. [Research support, non-U.S. gov’t]. Journal of Cellular Biochemistry, 109(4), 782–793. doi:10.1002/jcb.22457.

    PubMed  CAS  Google Scholar 

  • Zhong, H., Yang, X., Kaplan, L. M., Molony, C., & Schadt, E. E. (2010). Integrating pathway analysis and genetics of gene expression for genome-wide association studies. American Journal of Human Genetics, 86(4), 581–591. doi:10.1016/j.ajhg.2010.02.020.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Data collection and sharing for this project was funded by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904). ADNI is funded by the National Institute on Aging (NIA), the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: Abbott; Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Amorfix Life Sciences Ltd.; AstraZeneca; Bayer HealthCare; BioClinica, Inc.; Biogen Idec Inc.; Bristol-Myers Squibb Company; Eisai Inc.; Elan Pharmaceuticals Inc.; Eli Lilly and Company; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; GE Healthcare; Innogenetics, N.V.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Medpace, Inc.; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Servier; Synarc Inc.; and Takeda Pharmaceutical Company. The Canadian Institutes of Health Research provides funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer’s Disease Cooperative Study at the University of California, San Diego. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of California, Los Angeles. This research was also supported by NIH grants P30 AG010129, K01 AG030514, and the Dana Foundation. Data management and the specific analyses reported here were supported by NSF IIS-1117335 (Shen), NIA R13 AG030995 (Mungas), NIA R01 AG19771 (Saykin), P30 AG10133 (Saykin/Ghetti), and R01 AG029672 (Crane). The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Andrew J. Saykin.

Additional information

Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (http://www.adni.loni.ucla.edu/). As such, the investigators within ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.ucla.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf/.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramanan, V.K., Kim, S., Holohan, K. et al. Genome-wide pathway analysis of memory impairment in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort implicates gene candidates, canonical pathways, and networks. Brain Imaging and Behavior 6, 634–648 (2012). https://doi.org/10.1007/s11682-012-9196-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-012-9196-x

Keywords

Navigation