Skip to main content

Advertisement

Log in

Relationship between baseline brain metabolism measured using [18F]FDG PET and memory and executive function in prodromal and early Alzheimer’s disease

  • ADNI: Friday Harbor 2011 Workshop SPECIAL ISSUE
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

Differences in brain metabolism as measured by FDG-PET in prodromal and early Alzheimer’s disease (AD) have been consistently observed, with a characteristic parietotemporal hypometabolic pattern. However, exploration of brain metabolic correlates of more nuanced measures of cognitive function has been rare, particularly in larger samples. We analyzed the relationship between resting brain metabolism and memory and executive functioning within diagnostic group on a voxel-wise basis in 86 people with AD, 185 people with mild cognitive impairment (MCI), and 86 healthy controls (HC) from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). We found positive associations within AD and MCI but not in HC. For MCI and AD, impaired executive functioning was associated with reduced parietotemporal metabolism, suggesting a pattern consistent with known AD-related hypometabolism. These associations suggest that decreased metabolic activity in the parietal and temporal lobes may underlie the executive function deficits in AD and MCI. For memory, hypometabolism in similar regions of the parietal and temporal lobes were significantly associated with reduced performance in the MCI group. However, for the AD group, memory performance was significantly associated with metabolism in frontal and orbitofrontal areas, suggesting the possibility of compensatory metabolic activity in these areas. Overall, the associations between brain metabolism and cognition in this study suggest the importance of parietal and temporal lobar regions in memory and executive function in the early stages of disease and an increased importance of frontal regions for memory with increasing impairment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Albert, M. S., DeKosky, S. T., Dickson, D., Dubois, B., Feldman, H. H., Fox, N. C., & Phelps, C. H. (2011). The diagnosis of mild cognitive impairment due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s & Dementia, 7(3), 270–279. doi:10.1016/j.jalz.2011.03.008.

    Article  Google Scholar 

  • Alexander, G. E., Chen, K., Pietrini, P., Rapoport, S. I., & Reiman, E. M. (2002). Longitudinal PET evaluation of cerebral metabolic decline in dementia: A potential outcome measure in Alzheimer’s disease treatment studies. The American Journal of Psychiatry, 159(5), 738–745.

    Article  PubMed  Google Scholar 

  • Baudic, S., Barba, G. D., Thibaudet, M. C., Smagghe, A., Remy, P., & Traykov, L. (2006). Executive function deficits in early Alzheimer’s disease and their relations with episodic memory. Archives of Clinical Neuropsychology, 21(1), 15–21. doi:10.1016/j.acn.2005.07.002.

    Article  PubMed  Google Scholar 

  • Bohnen, N. I., Djang, D. S., Herholz, K., Anzai, Y., & Minoshima, S. (2012). Effectiveness and safety of 18F-FDG PET in the evaluation of dementia: A review of the recent literature. Journal of Nuclear Medicine, 53(1), 59–71. doi:10.2967/jnumed.111.096578.

    Article  PubMed  CAS  Google Scholar 

  • Bracco, L., Bessi, V., Piccini, C., Mosconi, L., Pupi, A., & Sorbi, S. (2007). Metabolic correlates of executive dysfunction. Different patterns in mild and very mild Alzheimer’s disease. Journal of Neurology, 254(8), 1052–1065. doi:10.1007/s00415-006-0488-1.

    Article  PubMed  CAS  Google Scholar 

  • Brickman, A. M., Siedlecki, K. L., Muraskin, J., Manly, J. J., Luchsinger, J. A., Yeung, L. K., & Stern, Y. (2011). White matter hyperintensities and cognition: Testing the reserve hypothesis. Neurobiology of Aging, 32(9), 1588–1598. doi:10.1016/j.neurobiolaging.2009.10.013.

    Article  PubMed  Google Scholar 

  • Carmichael, O., Schwarz, C., Drucker, D., Fletcher, E., Harvey, D., Beckett, L., & DeCarli, C. (2010). Longitudinal changes in white matter disease and cognition in the first year of the Alzheimer disease neuroimaging initiative. Archives of Neurology, 67(11), 1370–1378. doi:10.1001/archneurol.2010.284.

    Article  PubMed  Google Scholar 

  • Chen, K., Ayutyanont, N., Langbaum, J. B., Fleisher, A. S., Reschke, C., Lee, W., & Reiman, E. M. (2011). Characterizing Alzheimer’s disease using a hypometabolic convergence index. NeuroImage, 56(1), 52–60. doi:10.1016/j.neuroimage.2011.01.049.

    Article  PubMed  CAS  Google Scholar 

  • Chen, K., Langbaum, J. B., Fleisher, A. S., Ayutyanont, N., Reschke, C., Lee, W., & Reiman, E. M. (2010). Twelve-month metabolic declines in probable Alzheimer’s disease and amnestic mild cognitive impairment assessed using an empirically pre-defined statistical region-of-interest: Findings from the Alzheimer’s Disease Neuroimaging Initiative. NeuroImage, 51(2), 654–664. doi:10.1016/j.neuroimage.2010.02.064.

    Article  PubMed  Google Scholar 

  • Chetelat, G., Desgranges, B., de la Sayette, V., Viader, F., Berkouk, K., Landeau, B., & Eustache, F. (2003). Dissociating atrophy and hypometabolism impact on episodic memory in mild cognitive impairment. Brain, 126(Pt 9), 1955–1967. doi:10.1093/brain/awg196.

    Article  PubMed  Google Scholar 

  • Chetelat, G., Desgranges, B., de la Sayette, V., Viader, F., Eustache, F., & Baron, J. C. (2003). Mild cognitive impairment: Can FDG-PET predict who is to rapidly convert to Alzheimer’s disease? Neurology, 60(8), 1374–1377.

    Article  PubMed  CAS  Google Scholar 

  • Chow, T. W., Graff-Guerrero, A., Verhoeff, N. P., Binns, M. A., Tang-Wai, D. F., Freedman, M., & Pollock, B. G. (2011). Open-label study of the short-term effects of memantine on FDG-PET in frontotemporal dementia. Neuropsychiatric Disease and Treatment, 7, 415–424. doi:10.2147/NDT.S22635.

    Article  PubMed  CAS  Google Scholar 

  • Collette, F., Salmon, E., Van der Linden, M., Degueldre, C., & Franck, G. (1997). Functional anatomy of verbal and visuospatial span tasks in Alzheimer’s disease. [Clinical Trial Controlled Clinical Trial Research Support, Non-U.S. Gov’t]. Human Brain Mapping, 5(2), 110–118.

    Article  PubMed  CAS  Google Scholar 

  • Collette, F., Van der Linden, M., Delrue, G., & Salmon, E. (2002). Frontal hypometabolism does not explain inhibitory dysfunction in Alzheimer disease. [Research Support, Non-U.S. Gov’t]. Alzheimer Disease and Associated Disorders, 16(4), 228–238.

    Article  PubMed  CAS  Google Scholar 

  • Crane, P. K., Carle, A., Gibbons, L. E., Insel, P., Mackin, R. S., Gross, A., . . . for the Alzheiemer’s Disease Neuroimaging Initiative. (2011). Development and assessment of a composite score for memory in the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Brain Imaging and Behavior.

  • de Leon, M. J., Mosconi, L., Blennow, K., DeSanti, S., Zinkowski, R., Mehta, P. D., & Rusinek, H. (2007). Imaging and CSF studies in the preclinical diagnosis of Alzheimer’s disease. Annals of the New York Academy of Sciences, 1097, 114–145. doi:10.1196/annals.1379.012.

    Article  PubMed  Google Scholar 

  • Del Sole, A., Clerici, F., Chiti, A., Lecchi, M., Mariani, C., Maggiore, L., & Lucignani, G. (2008). Individual cerebral metabolic deficits in Alzheimer’s disease and amnestic mild cognitive impairment: An FDG PET study. European Journal of Nuclear Medicine and Molecular Imaging, 35(7), 1357–1366. doi:10.1007/s00259-008-0773-6.

    Article  PubMed  Google Scholar 

  • Desgranges, B., Baron, J. C., de la Sayette, V., Petit-Taboue, M. C., Benali, K., Landeau, B., & Eustache, F. (1998). The neural substrates of memory systems impairment in Alzheimer’s disease. A PET study of resting brain glucose utilization. Brain, 121(Pt 4), 611–631.

    Article  PubMed  Google Scholar 

  • Desgranges, B., Baron, J. C., Lalevee, C., Giffard, B., Viader, F., de La Sayette, V., & Eustache, F. (2002). The neural substrates of episodic memory impairment in Alzheimer’s disease as revealed by FDG-PET: Relationship to degree of deterioration. Brain, 125(Pt 5), 1116–1124.

    Article  PubMed  Google Scholar 

  • Drzezga, A., Grimmer, T., Riemenschneider, M., Lautenschlager, N., Siebner, H., Alexopoulus, P., & Kurz, A. (2005). Prediction of individual clinical outcome in MCI by means of genetic assessment and (18)F-FDG PET. Journal of Nuclear Medicine, 46(10), 1625–1632.

    PubMed  CAS  Google Scholar 

  • Edison, P., Archer, H. A., Hinz, R., Hammers, A., Pavese, N., Tai, Y. F., & Brooks, D. J. (2007). Amyloid, hypometabolism, and cognition in Alzheimer disease: An [11C]PIB and [18F]FDG PET study. Neurology, 68(7), 501–508. doi:10.1212/01.wnl.0000244749.20056.d4.

    Article  PubMed  CAS  Google Scholar 

  • Eustache, F., Desgranges, B., Giffard, B., de la Sayette, V., & Baron, J. C. (2001). Entorhinal cortex disruption causes memory deficit in early Alzheimer’s disease as shown by PET. Neuroreport, 12(4), 683–685.

    Article  PubMed  CAS  Google Scholar 

  • Gibbons, L. E., Carle, A. C., Mackin, R. S., Harvey, D., Mukherjee, S., Insel, P., . . . for the Alzheiemer’s Disease Neuroimaging Initiative. (2011). A composite score for executive functioning, validated in Alzheimer’s Disease Neuroimaging Initiative (ADNI) participants with baseline mild cognitive impairment. Brain Imaging and Behavior.

  • Habeck, C., Foster, N. L., Perneczky, R., Kurz, A., Alexopoulos, P., Koeppe, R. A., & Stern, Y. (2008). Multivariate and univariate neuroimaging biomarkers of Alzheimer’s disease. NeuroImage, 40(4), 1503–1515. doi:10.1016/j.neuroimage.2008.01.056.

    Article  PubMed  Google Scholar 

  • Haense, C., Herholz, K., Jagust, W. J., & Heiss, W. D. (2009). Performance of FDG PET for detection of Alzheimer’s disease in two independent multicentre samples (NEST-DD and ADNI). Dementia and Geriatric Cognitive Disorders, 28(3), 259–266. doi:10.1159/000241879.

    Article  PubMed  CAS  Google Scholar 

  • Herholz, K. (1995). FDG PET and differential diagnosis of dementia. Alzheimer Disease and Associated Disorders, 9(1), 6–16.

    Article  PubMed  CAS  Google Scholar 

  • Herholz, K. (2003). PET studies in dementia. Annals of Nuclear Medicine, 17(2), 79–89.

    Article  PubMed  Google Scholar 

  • Herholz, K., Salmon, E., Perani, D., Baron, J. C., Holthoff, V., Frolich, L., & Heiss, W. D. (2002). Discrimination between Alzheimer dementia and controls by automated analysis of multicenter FDG PET. NeuroImage, 17(1), 302–316.

    Article  PubMed  CAS  Google Scholar 

  • Herholz, K., Westwood, S., Haense, C., & Dunn, G. (2011). Evaluation of a calibrated (18)F-FDG PET score as a biomarker for progression in Alzheimer disease and mild cognitive impairment. Journal of Nuclear Medicine, 52(8), 1218–1226. doi:10.2967/jnumed.111.090902.

    Article  PubMed  Google Scholar 

  • Jagust, W., Reed, B., Mungas, D., Ellis, W., & Decarli, C. (2007). What does fluorodeoxyglucose PET imaging add to a clinical diagnosis of dementia? Neurology, 69(9), 871–877. doi:10.1212/01.wnl.0000269790.05105.16.

    Article  PubMed  CAS  Google Scholar 

  • Jagust, W. J., Bandy, D., Chen, K., Foster, N. L., Landau, S. M., Mathis, C. A., & Koeppe, R. A. (2010). The Alzheimer’s Disease Neuroimaging Initiative positron emission tomography core. Alzheimer’s & Dementia, 6(3), 221–229. doi:10.1016/j.jalz.2010.03.003.

    Article  Google Scholar 

  • Jagust, W. J., Landau, S. M., Shaw, L. M., Trojanowski, J. Q., Koeppe, R. A., Reiman, E. M., & Mathis, C. A. (2009). Relationships between biomarkers in aging and dementia. [Comparative Study Multicenter Study Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S.]. Neurology, 73(15), 1193–1199. doi:10.1212/WNL.0b013e3181bc010c.

    Article  PubMed  CAS  Google Scholar 

  • Kalpouzos, G., Eustache, F., de la Sayette, V., Viader, F., Chetelat, G., & Desgranges, B. (2005). Working memory and FDG-PET dissociate early and late onset Alzheimer disease patients. Journal of Neurology, 252(5), 548–558. doi:10.1007/s00415-005-0685-3.

    Article  PubMed  CAS  Google Scholar 

  • Kanda, T., Ishii, K., Uemura, T., Miyamoto, N., Yoshikawa, T., Kono, A. K., & Mori, E. (2008). Comparison of grey matter and metabolic reductions in frontotemporal dementia using FDG-PET and voxel-based morphometric MR studies. European Journal of Nuclear Medicine and Molecular Imaging, 35(12), 2227–2234. doi:10.1007/s00259-008-0871-5.

    Article  PubMed  Google Scholar 

  • Karow, D. S., McEvoy, L. K., Fennema-Notestine, C., Hagler, D. J., Jr., Jennings, R. G., Brewer, J. B., & Dale, A. M. (2010). Relative capability of MR imaging and FDG PET to depict changes associated with prodromal and early Alzheimer disease. Radiology, 256(3), 932–942. doi:10.1148/radiol.10091402.

    Article  PubMed  Google Scholar 

  • Kessler, J., Mielke, R., Grond, M., Herholz, K., & Heiss, W. D. (2000). Frontal lobe tasks do not reflect frontal lobe function in patients with probable Alzheimer’s disease. International Journal of Neuroscience, 104(1–4), 1–15.

    PubMed  CAS  Google Scholar 

  • Kim, S. H., Seo, S. W., Yoon, D. S., Chin, J., Lee, B. H., Cheong, H. K., & Na, D. L. (2010). Comparison of neuropsychological and FDG-PET findings between early-versus late-onset mild cognitive impairment: A five-year longitudinal study. Dementia and Geriatric Cognitive Disorders, 29(3), 213–223. doi:10.1159/000278422.

    Article  PubMed  Google Scholar 

  • Kono, A. K., Ishii, K., Sofue, K., Miyamoto, N., Sakamoto, S., & Mori, E. (2007). Fully automatic differential diagnosis system for dementia with Lewy bodies and Alzheimer’s disease using FDG-PET and 3D-SSP. European Journal of Nuclear Medicine and Molecular Imaging, 34(9), 1490–1497. doi:10.1007/s00259-007-0380-y.

    Article  PubMed  Google Scholar 

  • Lancaster, J. L., Rainey, L. H., Summerlin, J. L., Freitas, C. S., Fox, P. T., Evans, A. C., & Mazziotta, J. C. (1997). Automated labeling of the human brain: A preliminary report on the development and evaluation of a forward-transform method. Human Brain Mapping, 5(4), 238–242. doi:10.1002/(SICI)1097-0193(1997)5:4<238::AID-HBM6>3.0.CO;2-4.

    Article  PubMed  CAS  Google Scholar 

  • Landau, S. M., Harvey, D., Madison, C. M., Koeppe, R. A., Reiman, E. M., Foster, N. L., & Jagust, W. J. (2011). Associations between cognitive, functional, and FDG-PET measures of decline in AD and MCI. Neurobiology of Aging, 32(7), 1207–1218. doi:10.1016/j.neurobiolaging.2009.07.002.

    Article  PubMed  Google Scholar 

  • Landau, S. M., Harvey, D., Madison, C. M., Reiman, E. M., Foster, N. L., Aisen, P. S., & Jagust, W. J. (2010). Comparing predictors of conversion and decline in mild cognitive impairment. [Comparative Study Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S.]. Neurology, 75(3), 230–238. doi:10.1212/WNL.0b013e3181e8e8b8.

    Article  PubMed  Google Scholar 

  • Langbaum, J. B., Chen, K., Lee, W., Reschke, C., Bandy, D., Fleisher, A. S., & Reiman, E. M. (2009). Categorical and correlational analyses of baseline fluorodeoxyglucose positron emission tomography images from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). NeuroImage, 45(4), 1107–1116. doi:10.1016/j.neuroimage.2008.12.072.

    Article  PubMed  Google Scholar 

  • Lee, D. Y., Seo, E. H., Choo, I. H., Kim, S. G., Lee, J. S., Lee, D. S., & Woo, J. I. (2008). Neural correlates of the clock drawing test performance in Alzheimer’s disease: A FDG-PET study. Dementia and Geriatric Cognitive Disorders, 26(4), 306–313. doi:10.1159/000161055.

    Article  PubMed  CAS  Google Scholar 

  • Li, Y., Rinne, J. O., Mosconi, L., Pirraglia, E., Rusinek, H., DeSanti, S., & de Leon, M. J. (2008). Regional analysis of FDG and PIB-PET images in normal aging, mild cognitive impairment, and Alzheimer’s disease. European Journal of Nuclear Medicine and Molecular Imaging, 35(12), 2169–2181. doi:10.1007/s00259-008-0833-y.

    Article  PubMed  Google Scholar 

  • Lo, R. Y., Hubbard, A. E., Shaw, L. M., Trojanowski, J. Q., Petersen, R. C., Aisen, P. S., & Jagust, W. J. (2011). Longitudinal change of biomarkers in cognitive decline. Archives of Neurology, 68(10), 1257–1266. doi:10.1001/archneurol.2011.123.

    Article  PubMed  Google Scholar 

  • Lowe, V. J., Kemp, B. J., Jack, C. R., Jr., Senjem, M., Weigand, S., Shiung, M., & Petersen, R. C. (2009). Comparison of 18F-FDG and PiB PET in cognitive impairment. Journal of Nuclear Medicine, 50(6), 878–886. doi:10.2967/jnumed.108.058529.

    Article  PubMed  Google Scholar 

  • Lucignani, G., & Nobili, F. (2010). FDG-PET for early assessment of Alzheimer’s disease: Isn’t the evidence base large enough? European Journal of Nuclear Medicine and Molecular Imaging, 37(8), 1604–1609. doi:10.1007/s00259-010-1535-9.

    Article  PubMed  Google Scholar 

  • Messa, C., Perani, D., Lucignani, G., Zenorini, A., Zito, F., Rizzo, G., et al. (1994). High-resolution technetium-99 m-HMPAO SPECT in patients with probable Alzheimer’s disease: Comparison with fluorine-18-FDG PET. Journal of Nuclear Medicine, 35(2), 210–216.

    PubMed  CAS  Google Scholar 

  • Mielke, R., Pietrzyk, U., Jacobs, A., Fink, G. R., Ichimiya, A., Kessler, J., & Heiss, W. D. (1994). HMPAO SPET and FDG PET in Alzheimer’s disease and vascular dementia: Comparison of perfusion and metabolic pattern. European Journal of Nuclear Medicine, 21(10), 1052–1060.

    Article  PubMed  CAS  Google Scholar 

  • Minoshima, S., Frey, K. A., Koeppe, R. A., Foster, N. L., & Kuhl, D. E. (1995). A diagnostic approach in Alzheimer’s disease using three-dimensional stereotactic surface projections of fluorine-18-FDG PET. Journal of Nuclear Medicine, 36(7), 1238–1248.

    PubMed  CAS  Google Scholar 

  • Morinaga, A., Ono, K., Ikeda, T., Ikeda, Y., Shima, K., Noguchi-Shinohara, M., & Yamada, M. (2010). A comparison of the diagnostic sensitivity of MRI, CBF-SPECT, FDG-PET and cerebrospinal fluid biomarkers for detecting Alzheimer’s disease in a memory clinic. Dementia and Geriatric Cognitive Disorders, 30(4), 285–292. doi:10.1159/000320265.

    Article  PubMed  Google Scholar 

  • Mormino, E. C., Kluth, J. T., Madison, C. M., Rabinovici, G. D., Baker, S. L., Miller, B. L., & Jagust, W. J. (2009). Episodic memory loss is related to hippocampal-mediated beta-amyloid deposition in elderly subjects. [Comparative Study Research Support, N.I.H., Extramural]. Brain, 132(5), 1310–1323. doi:10.1093/brain/awn320.

    Article  PubMed  CAS  Google Scholar 

  • Mosconi, L. (2005). Brain glucose metabolism in the early and specific diagnosis of Alzheimer’s disease. FDG-PET studies in MCI and AD. European Journal of Nuclear Medicine and Molecular Imaging, 32(4), 486–510. doi:10.1007/s00259-005-1762-7.

    Article  PubMed  CAS  Google Scholar 

  • Mosconi, L., Berti, V., Glodzik, L., Pupi, A., De Santi, S., & de Leon, M. J. (2010). Pre-clinical detection of Alzheimer’s disease using FDG-PET, with or without amyloid imaging. Journal of Alzheimer’s Disease, 20(3), 843–854. doi:10.3233/JAD-2010-091504.

    PubMed  Google Scholar 

  • Mosconi, L., Perani, D., Sorbi, S., Herholz, K., Nacmias, B., Holthoff, V., & Pupi, A. (2004). MCI conversion to dementia and the APOE genotype: A prediction study with FDG-PET. Neurology, 63(12), 2332–2340.

    Article  PubMed  CAS  Google Scholar 

  • Mosconi, L., Tsui, W. H., De Santi, S., Li, J., Rusinek, H., Convit, A., & de Leon, M. J. (2005). Reduced hippocampal metabolism in MCI and AD: Automated FDG-PET image analysis. Neurology, 64(11), 1860–1867. doi:10.1212/01.WNL.0000163856.13524.08.

    Article  PubMed  CAS  Google Scholar 

  • Mosconi, L., Tsui, W. H., Pupi, A., De Santi, S., Drzezga, A., Minoshima, S., & de Leon, M. J. (2007). (18)F-FDG PET database of longitudinally confirmed healthy elderly individuals improves detection of mild cognitive impairment and Alzheimer’s disease. Journal of Nuclear Medicine, 48(7), 1129–1134. doi:10.2967/jnumed.107.040675.

    Article  PubMed  Google Scholar 

  • Mueller, S. G., Weiner, M. W., Thal, L. J., Petersen, R. C., Jack, C., Jagust, W., & Beckett, L. (2005a). The Alzheimer’s disease neuroimaging initiative. Neuroimaging Clinics of North America, 15(4), 869–877. doi:10.1016/j.nic.2005.09.008. xi–xii.

    Article  PubMed  Google Scholar 

  • Mueller, S. G., Weiner, M. W., Thal, L. J., Petersen, R. C., Jack, C. R., Jagust, W., & Beckett, L. (2005b). Ways toward an early diagnosis in Alzheimer’s disease: The Alzheimer’s Disease Neuroimaging Initiative (ADNI). Alzheimer’s & Dementia, 1(1), 55–66. doi:10.1016/j.jalz.2005.06.003.

    Article  Google Scholar 

  • Nestor, P. G., Parasuraman, R., Haxby, J. V., & Grady, C. L. (1991). Divided attention and metabolic brain dysfunction in mild dementia of the Alzheimer’s type. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.]. Neuropsychologia, 29(5), 379–387.

    Article  PubMed  CAS  Google Scholar 

  • Nishi, H., Sawamoto, N., Namiki, C., Yoshida, H., Dinh, H. D., Ishizu, K., & Fukuyama, H. (2010). Correlation between cognitive deficits and glucose hypometabolism in mild cognitive impairment. [Research Support, Non-U.S. Gov’t]. Journal of Neuroimaging, 20(1), 29–36. doi:10.1111/j.1552-6569.2008.00328.x.

    Article  PubMed  Google Scholar 

  • Nobili, F., Salmaso, D., Morbelli, S., Girtler, N., Piccardo, A., Brugnolo, A., & Pagani, M. (2008). Principal component analysis of FDG PET in amnestic MCI. European Journal of Nuclear Medicine and Molecular Imaging, 35(12), 2191–2202. doi:10.1007/s00259-008-0869-z.

    Article  PubMed  Google Scholar 

  • Noble, J. M., & Scarmeas, N. (2009). Application of pet imaging to diagnosis of Alzheimer’s disease and mild cognitive impairment. International Review of Neurobiology, 84, 133–149. doi:10.1016/S0074-7742(09)00407-3.

    Article  PubMed  CAS  Google Scholar 

  • Perani, D., Bressi, S., Cappa, S. F., Vallar, G., Alberoni, M., Grassi, F., et al. (1993). Evidence of multiple memory systems in the human brain. A [18F]FDG PET metabolic study. Brain, 116(4), 903–919.

    Article  PubMed  Google Scholar 

  • Petersen, R. C. (2000). Mild cognitive impairment: Transition between aging and Alzheimer’s disease. Neurologia, 15(3), 93–101.

    PubMed  CAS  Google Scholar 

  • Petersen, R. C., Smith, G. E., Waring, S. C., Ivnik, R. J., Tangalos, E. G., & Kokmen, E. (1999). Mild cognitive impairment: Clinical characterization and outcome. Archives of Neurology, 56(3), 303–308.

    Article  PubMed  CAS  Google Scholar 

  • Piert, M., Koeppe, R. A., Giordani, B., Berent, S., & Kuhl, D. E. (1996). Diminished glucose transport and phosphorylation in Alzheimer’s disease determined by dynamic FDG-PET. Journal of Nuclear Medicine, 37(2), 201–208.

    PubMed  CAS  Google Scholar 

  • Poljansky, S., Ibach, B., Hirschberger, B., Manner, P., Klunemann, H., Hajak, G., & Marienhagen, J. (2011). A visual [18F]FDG-PET rating scale for the differential diagnosis of frontotemporal lobar degeneration. European Archives of Psychiatry and Clinical Neuroscience, 261(6), 433–446. doi:10.1007/s00406-010-0184-0.

    Article  PubMed  Google Scholar 

  • Pontecorvo, M. J., & Mintun, M. A. (2011). PET amyloid imaging as a tool for early diagnosis and identifying patients at risk for progression to Alzheimer’s disease. Alzheimers Res Ther, 3(2), 11. doi:10.1186/alzrt70.

    Article  PubMed  Google Scholar 

  • Reiman, E. M. (2011). Fluorodeoxyglucose positron emission tomography: Emerging roles in the evaluation of putative Alzheimer’s disease-modifying treatments. Neurobiology of Aging, 32(Suppl 1), S44–47. doi:10.1016/j.neurobiolaging.2011.09.007.

    Article  PubMed  CAS  Google Scholar 

  • Rimajova, M., Lenzo, N. P., Wu, J. S., Bates, K. A., Campbell, A., Dhaliwal, S. S., & Martins, R. N. (2008). Fluoro-2-deoxy-D-glucose (FDG)-PET in APOEepsilon4 carriers in the Australian population. Journal of Alzheimer’s Disease, 13(2), 137–146.

    PubMed  CAS  Google Scholar 

  • Samuraki, M., Matsunari, I., Chen, W. P., Yajima, K., Yanase, D., Fujikawa, A., & Yamada, M. (2007). Partial volume effect-corrected FDG PET and grey matter volume loss in patients with mild Alzheimer’s disease. European Journal of Nuclear Medicine and Molecular Imaging, 34(10), 1658–1669. doi:10.1007/s00259-007-0454-x.

    Article  PubMed  Google Scholar 

  • Schonknecht, O. D., Hunt, A., Toro, P., Guenther, T., Henze, M., Haberkorn, U., & Schroder, J. (2011). Bihemispheric cerebral FDG PET correlates of cognitive dysfunction as assessed by the CERAD in Alzheimer’s disease. Clinical EEG and Neuroscience, 42(2), 71–76.

    Article  PubMed  Google Scholar 

  • Schonknecht, O. D., Hunt, A., Toro, P., Henze, M., Haberkorn, U., & Schroder, J. (2009). Neural correlates of delayed episodic memory in patients with mild cognitive impairment--a FDG PET study. [Research Support, Non-U.S. Gov’t]. Neuroscience Letters, 467(2), 100–104. doi:10.1016/j.neulet.2009.10.014.

    Article  PubMed  Google Scholar 

  • Silverman, D. H., Small, G. W., Chang, C. Y., Lu, C. S., Kung De Aburto, M. A., Chen, W., & Phelps, M. E. (2001). Positron emission tomography in evaluation of dementia: Regional brain metabolism and long-term outcome. Journal of the American Medical Association, 286(17), 2120–2127.

    Article  PubMed  CAS  Google Scholar 

  • Slansky, I., Herholz, K., Pietrzyk, U., Kessler, J., Grond, M., Mielke, R., & Heiss, W. D. (1995). Cognitive impairment in Alzheimer’s disease correlates with ventricular width and atrophy-corrected cortical glucose metabolism. Neuroradiology, 37(4), 270–277.

    Article  PubMed  CAS  Google Scholar 

  • Stopford, C. L., Thompson, J. C., Neary, D., Richardson, A. M., & Snowden, J. S. (2010). Working memory, attention, and executive function in Alzheimer’s disease and frontotemporal dementia. Cortex. doi:10.1016/j.cortex.2010.12.002.

  • Teipel, S. J., Willoch, F., Ishii, K., Burger, K., Drzezga, A., Engel, R., & Hampel, H. (2006). Resting state glucose utilization and the CERAD cognitive battery in patients with Alzheimer’s disease. Neurobiology of Aging, 27(5), 681–690. doi:10.1016/j.neurobiolaging.2005.03.015.

    Article  PubMed  CAS  Google Scholar 

  • von Borczyskowski, D., Wilke, F., Martin, B., Brenner, W., Clausen, M., Mester, J., & Buchert, R. (2006). Evaluation of a new expert system for fully automated detection of the Alzheimer’s dementia pattern in FDG PET. Nuclear Medicine Communications, 27(9), 739–743. doi:10.1097/01.mnm.0000230078.25609.2b.

    Article  Google Scholar 

  • Walhovd, K. B., Fjell, A. M., Brewer, J., McEvoy, L. K., Fennema-Notestine, C., Hagler, D. J., Jr., & Dale, A. M. (2010). Combining MR imaging, positron-emission tomography, and CSF biomarkers in the diagnosis and prognosis of Alzheimer disease. AJNR. American Journal of Neuroradiology, 31(2), 347–354. doi:10.3174/ajnr.A1809.

    Article  PubMed  CAS  Google Scholar 

  • Walhovd, K. B., Fjell, A. M., Dale, A. M., McEvoy, L. K., Brewer, J., Karow, D. S., & Fennema-Notestine, C. (2010). Multi-modal imaging predicts memory performance in normal aging and cognitive decline. Neurobiology of Aging, 31(7), 1107–1121. doi:10.1016/j.neurobiolaging.2008.08.013.

    Article  PubMed  CAS  Google Scholar 

  • Weiner, M. W., Aisen, P. S., Jack, C. R., Jr., Jagust, W. J., Trojanowski, J. Q., Shaw, L., & Schmidt, M. (2010). The Alzheimer’s disease neuroimaging initiative: Progress report and future plans. Alzheimer’s & Dementia, 6(3), 202–211. e207.

    Article  Google Scholar 

  • Yun, J. Y., Lee, D. Y., Seo, E. H., Choo, I. H., Park, S. Y., Kim, S. G., & Woo, J. I. (2011). Neural Correlates of Stroop Performance in Alzheimer’s Disease: A FDG-PET Study. Dement Geriatr Cogn Dis Extra, 1(1), 190–201. doi:10.1159/000329517.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Data collection and sharing for this project was funded by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: Abbott; Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Amorfix Life Sciences Ltd.; AstraZeneca; Bayer HealthCare; BioClinica, Inc.; Biogen Idec Inc.; Bristol-Myers Squibb Company; Eisai Inc.; Elan Pharmaceuticals Inc.; Eli Lilly and Company; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; GE Healthcare; Innogenetics, N.V.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Medpace, Inc.; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Servier; Synarc Inc.; and Takeda Pharmaceutical Company. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer’s Disease Cooperative Study at the University of California, San Diego. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of California, Los Angeles. This research was also supported by NIH grants P30 AG010129, K01 AG030514, and the Dana Foundation.

Further grant support for individual authors on this publication: NIA 5R01AG026114 (Habeck) and NIA R01 AG 029672 (Crane). This work developed from workgroup discussions at the 2011 Friday Harbor Advanced Psychometrics Workshop funded in part by NIA R13 AG030995 (Dan Mungas, PI).

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Christian Habeck.

Additional information

Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.ucla.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.ucla.edu/wpcontent/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf

Rights and permissions

Reprints and permissions

About this article

Cite this article

Habeck, C., Risacher, S., Lee, G.J. et al. Relationship between baseline brain metabolism measured using [18F]FDG PET and memory and executive function in prodromal and early Alzheimer’s disease. Brain Imaging and Behavior 6, 568–583 (2012). https://doi.org/10.1007/s11682-012-9208-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-012-9208-x

Keywords

Navigation