Skip to main content
Log in

Arsenic geochemistry of groundwater in Southeast Asia

  • Review
  • Published:
Frontiers of Medicine Aims and scope Submit manuscript

Abstract

The occurrence of high concentrations of arsenic in the groundwater of the Southeast Asia region has received much attention in the past decade. This study presents an overview of the arsenic contamination problems in Vietnam, Cambodia, Lao People’s Democratic Republic and Thailand. Most groundwater used as a source of drinking water in rural areas has been found to be contaminated with arsenic exceeding the WHO drinking water guideline of 10 μg·L−1. With the exception of Thailand, groundwater was found to be contaminated with naturally occurring arsenic in the region. Interestingly, high arsenic concentrations (> 10 μg·L−1) were generally found in the floodplain areas located along the Mekong River. The source of elevated arsenic concentrations in groundwater is thought to be the release of arsenic from river sediments under highly reducing conditions. In Thailand, arsenic has never been found naturally in groundwater, but originates from tin mining activities. More than 10 million residents in Southeast Asia are estimated to be at risk from consuming arsenic-contaminated groundwater. In Southeast Asia, groundwater has been found to be a significant source of daily inorganic arsenic intake in humans. A positive correlation between groundwater arsenic concentration and arsenic concentration in human hair has been observed in Cambodia and Vietnam. A substantial knowledge gap exists between the epidemiology of arsenicosis and its impact on human health. More collaborative studies particularly on the scope of public health and its epidemiology are needed to conduct to fulfill the knowledge gaps of As as well as to enhance the operational responses to As issue in Southeast Asian countries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Schmoll O, Howard G, Chilton J, Chorus I. Protecting groundwater for health: Managing the quality of drinking-water resources. World Health Organization. London: IWA publishing, 2006

    Google Scholar 

  2. Chanpiwat P, Sthiannopkao S, Cho KH, Kim KW, San V, Suvanthong B, Vongthavady C. Contamination by arsenic and other trace elements of tube-well water along the Mekong River in Lao PDR. Environ Pollut 2011; 159(2): 567–576

    Article  PubMed  CAS  Google Scholar 

  3. The World Bank, the Water Sanitation Program. World Bank policy report: towards a more effective operational response. Arsenic contamination of groundwater in South and East Asian Countries. Massachusetts: The International Bank for Reconstruction and Development, 2005

    Google Scholar 

  4. International Agency for Research on Cancer (IARC). IARC monographs on the evaluation of carcinogenic risks to humans, Supplement 7: Overall evaluations of carcinogenicity: An updating of IARC monographs volumes 1 to 42. http://monographs.iarc.fr/ENG/Monographs/suppl17-19.pdf (Access on June 26, 2011)

  5. Rahman MM, Naidu R, Bhattacharya P. Arsenic contamination in groundwater in the Southeast Asia region. Environ Geochem Health 2009; 31(Suppl 1): 9–21

    Article  PubMed  CAS  Google Scholar 

  6. Smedley PL, Kinniburgh DG. A review of the source, behavior and distribution of arsenic in natural waters. Appl Geochem 2002; 17(5): 517–568

    Article  CAS  Google Scholar 

  7. Adriano DC. Trace elements in terrestrial environments: biogeochemistry, bioavailability, and risk of metal. 2nd ed. Springer-Verlag, NY, USA, 2001

    Google Scholar 

  8. Islam FS, Gault AG, Boothman C, Polya DA, Charnock JM, Chatterjee D, Lloyd JR. Role of metal-reducing bacteria in arsenic release from Bengal delta sediments. Nature 2004; 430(6995): 68–71

    Article  PubMed  CAS  Google Scholar 

  9. Stüben D, Berner Z, Chandrasekharam D, Karmakar J. Arsenic enrichment in groundwater of West Bengal, India: geochemical evidence for mobilization of As under reducing conditions. Appl Geochem 2003; 18(9): 1417–1434

    Article  Google Scholar 

  10. Rowland HAL, Polya DA, Lloyd JR, Pancost RD. Characterisation of organic matter in a shallow, reducing, arsenic-rich aquifer, West Bengal. Org Geochem 2006; 37(9): 1101–1114

    Article  CAS  Google Scholar 

  11. Anawar HM, Akai J, Komaki K, Terao H, Yoshioka T, Ishizuka T, Safiullah S, Kato K. Geochemical occurrence of arsenic in groundwater of Bangladesh L sources and mobilization processes. J Geochem Explor 2003; 77(2–3): 109–131

    Article  CAS  Google Scholar 

  12. Routh J, Hjelmquist O. Distribution of arsenic and its mobility in shallow aquifer sediments from Ambikanagar, West Bengal, India. Appl Geochem 2011; 26(4): 505–515

    Article  CAS  Google Scholar 

  13. Thomas DJ. Arsenolysis and thiol-dependent arsenate reduction. Toxicol Sci 2010; 117(2): 249–252

    Article  PubMed  CAS  Google Scholar 

  14. Jomova K, Jenisova Z, Feszterova M, Baros S, Liska J, Hudecova D, Rhodes CJ, Valko M. Arsenic: toxicity, oxidative stress and human disease. J Appl Toxicol 2011; 31(2): 95–107

    PubMed  CAS  Google Scholar 

  15. Abernathy CO, Thomas DJ, Calderon RL. Health effects and risk assessment of arsenic. J Nutr 2003; 133(5 Suppl 1): 1536S–1538S

    PubMed  CAS  Google Scholar 

  16. Cohen SM, Arnold LL, Eldan M, Lewis AS, Beck BD. Methylated arsenicals: the implications of metabolism and carcinogenicity studies in rodents to human risk assessment. Crit Rev Toxicol 2006; 36(2): 99–133

    Article  PubMed  CAS  Google Scholar 

  17. Roy P, Saha A. Metabolism and toxicity of arsenic: a human carcinogen. Curr Sci 2002; 82(1): 38–45

    CAS  Google Scholar 

  18. Hughes MF. Arsenic toxicity and potential mechanisms of action. Toxicol Lett 2002; 133(1): 1–16

    Article  PubMed  CAS  Google Scholar 

  19. Masotti A, Sacco LD, Bottazzo GF, Sturchio E. Risk assessment of inorganic arsenic pollution on human health. Environ Pollut 2009; 157(6): 1771–1772

    Article  PubMed  CAS  Google Scholar 

  20. Khan MM, Sakauchi F, Sonoda T, Washio M, Mori M. Magnitude of arsenic toxicity in tube-well drinking water in Bangladesh and its adverse effects on human health including cancer: evidence from a review of the literature. Asian Pac J Cancer Prev 2003; 4(1): 7–14

    PubMed  CAS  Google Scholar 

  21. Khan MA, Ho YS. Arsenic in drinking water: a review on toxicological effects, mechanism of accumulation and remediation. Asian Journal of Chemistry 2011; 23(5): 1899–1901

    Google Scholar 

  22. Integrated Risk Information System (IRIS). http://www.epa.gov/IRIS/ (Access on July 27, 2011)

  23. Duker AA, Carranza EJM, Hale M. Arsenic geochemistry and health. Environ Int 2005; 31(5): 631–641

    Article  PubMed  CAS  Google Scholar 

  24. Kapaj S, Peterson H, Liber K, Bhattacharya P. Human health effects from chronic arsenic poisoning—a review. J Environ Sci Health A Tox Hazard Subst Environ Eng 2006; 41(10): 2399–2428

    Article  PubMed  CAS  Google Scholar 

  25. Rahman MM, Ng JC, Naidu R. Chronic exposure of arsenic via drinking water and its adverse health impacts on humans. Environ Geochem Health 2009; 31(Suppl 1): 189–200

    Article  PubMed  CAS  Google Scholar 

  26. International Agency for Research on Cancer (IARC). Arsenic in drinking water 1. Exposure data — IARC monographs. http://monographs.iarc.fr/ENG/Monographs/vol84/mono84-6A.pdf (Access on August 18, 2011)

  27. Benbrahim-Tallaa L, Waalkes MP. Inorganic arsenic and human prostate cancer. Environ Health Perspect 2008; 116(2): 158–164

    Article  PubMed  CAS  Google Scholar 

  28. Cantor KP, Lubin JH. Arsenic, internal cancers, and issues in inference from studies of low-level exposures in human populations. Toxicol Appl Pharmacol 2007; 222(3): 252–257

    Article  PubMed  CAS  Google Scholar 

  29. Bonior DE. Public exposure to arsenic in drinking water in Michigan. http://oversight-archive.waxman.house.gov/documents/20040607132512-45841.pdf (Access on August 19, 2011)

  30. Berg M, Stengel C, Trang P P, Hungviet M, Sampson M, Leng S, Samreth D, Fredericks. Magnitude of arsenic pollution in the Mekong and Red River Deltas—Cambodia and Vietnam. Sci Total Environ 2007; 372(2–3): 413–425

    PubMed  CAS  Google Scholar 

  31. Berg M, Tran HC, Nguyen TC, Pham HV, Schertenleib R, Giger W. Arsenic contamination of groundwater and drinking water in Vietnam: a human health threat. Environ Sci Technol 2001; 35(13): 2621–2626

    Article  PubMed  CAS  Google Scholar 

  32. Stanger G, Truong TV, Ngoc KS, Luyen TV, Thanh TT. Arsenic in groundwaters of the lower Mekong. Environ Geochem Health 2005; 27(4): 341–357

    Article  PubMed  CAS  Google Scholar 

  33. Hoang TH, Bang S, Kim KW, Nguyen MH, Dang DM. Arsenic in groundwater and sediment in the Mekong River delta, Vietnam. Environ Pollut 2010; 158(8): 2648–2658

    Article  PubMed  CAS  Google Scholar 

  34. Phuong TD, Kokot S, Chuong PV, Tong Khiem D. Elemental content of Vietnamese rice. Part 1: sampling, analysis, and comparison with previous studies. Analyst (Lond) 1999; 124(4): 553–560

    Article  CAS  Google Scholar 

  35. Hoang TH, Bang S, Kim KW, Nguyen MH. Community exposure to arsenic in the Mekong River delta, southern Vietnam. J Environ Monit 2011; 13: 2025–2032

    Article  Google Scholar 

  36. Sengupta MK, Hossain MA, Mukherjee A, Ahamed S, Das B, Nayak B, Pal A, Chakraborti D. Arsenic burden of cooked rice: traditional and modern methods. Food Chem Toxicol 2006; 44(11): 1823–1829

    Article  PubMed  CAS  Google Scholar 

  37. Signes A, Mitra K, Burló F, Carbonell-Barrachina AA. Contribution of water and cooked rice to an estimation of the dietary intake of inorganic arsenic in a rural village of West Bengal, India. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2008; 25(1): 41–50

    PubMed  CAS  Google Scholar 

  38. Ohno K, Yanase T, Matsuo Y, Kimura T, Hamidur Rahman M, Magara Y, Matsui Y. Arsenic intake via water and food by a population living in an arsenic-affected area of Bangladesh. Sci Total Environ 2007; 381(1–3): 68–76

    PubMed  CAS  Google Scholar 

  39. Cleland B, Tsuchiya A, Kalman DA, Dills R, Burbacher TM, White JW, Faustman EM, Mariën K. Arsenic exposure within the Korean community (United States) based on dietary behavior and arsenic levels in hair, urine, air, and water. Environ Health Perspect 2009; 117(4): 632–638

    PubMed  CAS  Google Scholar 

  40. Phan K, Sthiannopkao S, Kim KW, Wong MH, Sao V, Hashim JH, Mohamed Yasin MS, Aljunid SM. Health risk assessment of inorganic arsenic intake of Cambodia residents through groundwater drinking pathway. Water Res 2010; 44(19): 5777–5788

    Article  PubMed  CAS  Google Scholar 

  41. Sampson ML, Bostick B, Chiew H, Hangan JM, Shantz A. Arsenicosis in Cambodia: case studies and policy response. Appl Geochem 2008; 23(11): 2976–2985

    Article  Google Scholar 

  42. Polya DA, Lythgoe PR, Abou-Shakra F, Gault AG, Brydie JR, Webster JG, Brown KL, Nimfopoulos MK, Michailidis KM. ICICP-MS and IC-ICP-HEX-MS determination of arsenic speciation in surface and groundwaters: preservation and analytical issues. Mineral Mag 2003; 67(2): 247–261

    Article  CAS  Google Scholar 

  43. Polya DA, Gault AG, Diebe N, Feldman P, Rosenboom JW, Gilligan E, Fredericks D, Milton AH, Sampson M, Rowland HAL, Lythgoe PR, Jones JC, Middleton C, Cooke DA. Arsenic hazard in shallow Cambodian groundwaters. Mineral Mag 2005; 69(5): 807–823

    Article  CAS  Google Scholar 

  44. Buschmann J, Berg M, Stengel C, Winkel L, Sampson ML, Trang PT, Viet PH. Contamination of drinking water resources in the Mekong delta floodplains: arsenic and other trace metals pose serious health risks to population. Environ Int 2008; 34(6): 756–764

    Article  PubMed  CAS  Google Scholar 

  45. Quicksall AN, Bostick BC, Sampson ML. Linking organic matter deposition and iron mineral transformations to groundwater arsenic levels in the Mekong delta, Cambodia. Appl Geochem 2008; 23(11): 3088–3098

    Article  CAS  Google Scholar 

  46. Sthiannopkao S, Kim KW, Sotham S, Choup S. Arsenic and manganese in tube well waters of Prey Veng and Kandal Provinces, Cambodia. Appl Geochem 2008; 23(5): 1086–1093

    Article  CAS  Google Scholar 

  47. Luu TT, Sthiannopkao S, Kim KW. Arsenic and other trace elements contamination in groundwater and a risk assessment study for the residents in the Kandal Province of Cambodia. Environ Int 2009; 35(3): 455–460

    Article  PubMed  CAS  Google Scholar 

  48. Rowland HAL, Gault AG, Lythgoe P, Polya DA. Geochemistry of aquifer sediments and arsenic-rich groundwaters from Kandal Province, Cambodia. Appl Geochem 2008; 23(11): 3029–3046

    Article  CAS  Google Scholar 

  49. Lear G, Song B, Gault AG, Polya DA, Lloyd JR. Molecular analysis of arsenate-reducing bacteria within Cambodian sediments following amendment with acetate. Appl Environ Microbiol 2007; 73(4): 1041–1048

    Article  PubMed  CAS  Google Scholar 

  50. Benner SG, Polizzotto ML, Kocar BD, Ganguly S, Phan K, Ouch K, Sampson M, Fendorf S. Groundwater flow in an arsenic-contaminated aquifer, Mekong Delta, Cambodia. Appl Geochem 2008; 23(11): 3072–3087

    Article  CAS  Google Scholar 

  51. Kocar BD, Polizzotto ML, Benner SG, Ying SC, Ung M, Ouch K, Samreth S, Suy B, Phan K, Sampson M. Integrated biogeochemical and hydrologic processes driving arsenic release from shallow sediments to groundwaters of the Mekong delta. Appl Geochem 2008; 23(11): 3059–3071

    Article  CAS  Google Scholar 

  52. Polizzotto ML, Kocar BD, Benner SG, Sampson M, Fendorf S. Near-surface wetland sediments as a source of arsenic release to ground water in Asia. Nature 2008; 454(7203): 505–508

    Article  PubMed  CAS  Google Scholar 

  53. Robinson DA, Lebron I, Kocar B, Phan K, Sampson M, Crook N. Time-lapse geophysical imaging of soil moisture dynamics in tropical deltaic soils: As aid to interpreting hydrological and geochemical processes. Water Resour Res 2009; 45:W00D342.

    Article  Google Scholar 

  54. Kubota R, Kunito T, Agusa T, Fujihara J, Monirith I, Iwata H, Subramanian A, Seang Tana T, Tanabe S. Urinary 8-hydroxy-2′-deoxyguanosine in inhabitants chronically exposed to arsenic in groundwater in Cambodia. J Environ Monit 2006; 8(2): 293–299

    Article  PubMed  CAS  Google Scholar 

  55. Chiew H, Sampson ML, Huch S, Ken S, Bostick BC. Effect of groundwater iron and phosphate on the efficacy of arsenic removal by iron-amended BioSand filters. Environ Sci Technol 2009; 43(16): 6295–6300

    Article  PubMed  CAS  Google Scholar 

  56. Mazumder DN, Majumdar KK, Santra SC, Kol H, Vicheth C. Occurrence of arsenicosis in a rural village of Cambodia. J Environ Sci Health A Tox Hazard Subst Environ Eng 2009; 44(5): 480–487

    Article  PubMed  CAS  Google Scholar 

  57. Office of Emergency and Remedial Response, U.S. Environmental Protection Agency. Risk Interim final, EPA/540/1-89/002, 1989

  58. Environmental Protection Agency. HH: Risk characterization. http://www.epa.gov/region8/r8risk/hh_risk.html (Access on July 27, 2011)

  59. James GG, Adam CG, Colinda H, Erin MK, Kayla J, Say BV. Arsenic and amputations in Cambodia. Asian Biomed 2010; 4(3): 469–474

    Google Scholar 

  60. Youngson RM. Collis dictionary of medicine. 4th ed. London: Harper Collins, 2007

    Google Scholar 

  61. Gault AG, Rowland HAL, Charnock JM, Wogelius RA, Gomez-Morilla I, Vong S, Leng M, Samreth S, Sampson ML, Polya DA. Arsenic in hair and nails of individuals exposed to arsenic-rich groundwaters in Kandal Province, Cambodia. Sci Total Environ 2008; 393(1): 168–176

    Article  PubMed  CAS  Google Scholar 

  62. Sthiannopkao S, Kim KW, Cho KH, Wantala K, Sotham S, Sokuntheara C, Kim JH. Arsenic levels in human hair, Kandal Province, Cambodia: the influences of groundwater arsenic, consumption period, age and gender. Appl Geochem 2010; 25(1): 81–90

    Article  CAS  Google Scholar 

  63. Phan K, Sthiannopkao S, Kim KW. Surveillance on chronic arsenic exposure in the Mekong River basin of Cambodia using different biomarkers. Int J Hyg Environ Health 2011 Aug 4. [Epub ahead of print]

  64. Fengthong T, Dethoudom S, Keosavanh O. Drinking water quality in the Lao People’s Democratic Republic. Seminar on the environmental and public health risks due to contamination of soils, crops, surface and groundwater from urban, industrial, and natural sources in South East Asia, Hanoi, Vietnam. December 2002, UN-ESCAP

  65. Kohnhorst R, Kunito T, Agusa T, Fujihara J, Monirith I, Iwata H. Arsenic in groundwater in selected countries in South and Southeast Asia: a review. J Trop Med Parasitol 2005; 28: 73–82

    Google Scholar 

  66. Caussy D. Epidemiological methods for mitigating health impacts of arsenic in South East Asia region of the World Health Organization. http://www.bvsde.ops-oms.org/bvsacd/arsenico/Arsenic2004/theme1/paper1.2.pdf

  67. Williams M, Fordyee F, Paijitprapapon A, Charoenchaisri P. Arsenic contamination in surface drainage and groundwater in part of the Southeast Asian tin belt, Nakhon Si Thammarat Province, southern Thailand. Environmental Geology 1996; 27(1): 16–33

    Article  CAS  Google Scholar 

  68. Smedley PL. Sources and distribution of arsenic in groundwater and aquifers. In: Appelo T. Arsenic in groundwater—a world problem. Proceedings of seminar Utrecht 29 November 2006. http://www.iah.org/downloads/occupub/arsenic_gw.pdf

  69. Jindal R, Ratanamalaya P. Investigations on the status of arsenic contamination in southern Thailand. In: International Water Association (IWA). Southeast AsianWater Environment 1. London: IWA Publishing, 2006: 223–229

    Google Scholar 

  70. Ruangwises S, Saipan P. Dietary intake of total and inorganic arsenic by adults in arsenic-contaminated area of Ron Phibun district, Thailand. Bull Environ Contam Toxicol 2010; 84(3): 274–277

    Article  PubMed  CAS  Google Scholar 

  71. Tseng CH. Chronic arsenic intoxication in Asia: current perspectives. www.tsim.org.tw/journal/jour10-6/P10_224.PDF

  72. Kadushkin A, Siddiqui Z, Shipin O. Groundwater quality assessment and management in selected countries of East and Southeast Asia. 2004. http://www.bvsde.paho.org/bvsacd/cd63/groundwaterquality.pdf

  73. The World Bank, the Water Sanitation Program. World Bank policy report: volume II technical report. Arsenic contamination of groundwater in South and East Asian Countries. Massachusetts: the International Bank for Reconstruction and Development, 2005

    Google Scholar 

  74. Lap Nguyen V, Oanh TK, Tateishi M. Late Holocene depositional environments and coastal evolution of the Mekong River Delta, Southern Vietnam. J Southeast Asian Earth Sci 2000; 18(4): 427–439

    Google Scholar 

  75. Lu XX, Siew RY. Water discharge and sediment flux changes in the Lower Mekong River. Hydrol Earth Syst Discuss 2005; 2(6): 2287–2325

    Article  Google Scholar 

  76. Winkel L, Berg M, Stengel C, Rosenberg T. Hydrogeological survey assessing arsenic and other groundwater contaminants in the lowlands of Sumatra, Indonesia. Appl Geochem 2008; 23(11): 3019–3028

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyoung-Woong Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, KW., Chanpiwat, P., Hanh, H.T. et al. Arsenic geochemistry of groundwater in Southeast Asia. Front. Med. 5, 420–433 (2011). https://doi.org/10.1007/s11684-011-0158-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11684-011-0158-2

Keywords

Navigation